
What’s New in
IDL 5.6

IDL Version 5.6
October, 2002 Edition
Copyright © Research Systems, Inc.
All Rights Reserved.

1002IDL56WN

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview of New Features in IDL 5.6 ... 11
Visualization Enhancements ... 12

Mesa Library Update .. 12
Labels for Contour Objects ... 13

Labels for Polyline Objects ... 14
Labels for ISOCONTOUR ... 15

New User-Defined Clipping Planes for Objects ... 15
New Keyword to Determine the Maximum Number of Clipping Planes 15

Enhancements for Displaying Points and Lines in Object Graphics 16
OpenGL Hardware Support for Object Graphics on HP and Linux 18

New User-Defined Cursor Registration .. 18
New Keyword to PickData Method .. 18

Analysis Enhancements ... 19
New LAPACK Linear Algebra Routines ... 20
What’s New in IDL 5.6 3

4

New DIAG_MATRIX Function ... 23
New MATRIX_POWER Function ... 23

New PRODUCT Function ... 23
New Run-length Encoding for ROI Masks ... 23

New Complex Input Support ... 23
Enhancements to ATAN ... 24

Enhancements to the BESEL Functions .. 24
Enhancement to the CURVEFIT Function ... 24

Enhancements to the EXPINT Function ... 24
Enhancements to the GAUSSFIT Function .. 24

Enhancements to the MEDIAN Function ... 25
Language Enhancements ... 26

New Stride Syntax for Array Subscripts ... 26
New Shared Memory Support ... 27

New and Enhanced File Handling Routines .. 28
New SWAP_ENDIAN_INPLACE Procedure .. 29

New Keywords to SWAP_ENDIAN Function ... 29
Enhancements to the EXPAND_PATH Function ... 29

Enhancements to the MAKE_DLL Procedure .. 30
New STRICTARRSUBS Option to COMPILE_OPT .. 30

Large File Support for AIX and Linux Platforms ... 30
Large File Support For Compressed Files ... 31

64-bit Memory Support On More Platforms ... 31
Thread Pool and Multi-Threading Support On AIX and Mac OS X 31

Enhancements to the KEYWORD_SET Function .. 32
File Access Enhancements ... 33

New Support for ITIFF .. 33
New XML Parser Object ... 33

New HDF5 Routines ... 34
New H5_BROWSER Routine ... 35

HDF and HDF-EOS Library Updates ... 36
Enhanced Support for Shapefiles .. 36

Mapping Enhancements ... 37
IDLDE Enhancements ... 38

Copying and Pasting Multiple IDL Code Lines .. 38
Block Comments ... 39
Contents What’s New in IDL 5.6

5

Changes to Path Preferences ... 39
IDL GUIBuilder Enhancements .. 41

User Interface Toolkit Enhancements ... 42
New COM Functionality .. 43

New Combobox Widget ... 44
New Tab Widget ... 45

New Tree Widget .. 45
Table Widget Enhancements .. 46

Move, Iconify, Size Events for Base Widgets .. 47
Color Bitmap Buttons from Array Data ... 49

Push and Toggle Buttons .. 49
Checkmarks on Menu Buttons .. 50

Tooltips for Button and Draw Widgets ... 50
Keyboard Events for Draw Widgets ... 51

Scrolling Draw Widget Enhancements ... 52
Label Widget Enhancements .. 53

Enhancements to WIDGET_INFO ... 54
New Personal Use Licensing ... 55

New Support for Macintosh OS X .. 56
Documentation Enhancements .. 57

New Image Processing in IDL Manual .. 57
Revised Graphical User Interface Documentation ... 57

Revised and Enhanced External Development Guide .. 58
Version History in Reference Documentation .. 58

New Online Help Systems .. 58
New and Enhanced IDL Objects ... 60

New IDL Object Classes ... 60
New IDL Object Methods ... 60

IDL Object Method Enhancements .. 61
New and Enhanced IDL Routines ... 89

New IDL Routines .. 89
IDL Routine Enhancements .. 111

ION 1.6 Enhancements .. 135
ION Script Enhancements .. 135

ION Java Enhancements ... 137
Routines Obsoleted in IDL 5.6 .. 139
What’s New in IDL 5.6 Contents

6

Requirements for this Release ... 140
IDL 5.6 Requirements ... 140

ION 1.6 Requirements ... 142
Windows 98 Platform Support Ending .. 144

Chapter 2:
New IDL Objects and Methods .. 145
IDLffXMLSAX object ... 146
IDLgrContour object .. 185

Chapter 3:
New IDL Routines ... 189
COPY_LUN ... 190
DIAG_MATRIX ... 193

FILE_COPY .. 196
FILE_LINES .. 200

FILE_LINK .. 203
FILE_MOVE ... 206

FILE_READLINK ... 209
FILE_SAME .. 211

H5_BROWSER ... 214
H5_CLOSE .. 217

H5_GET_LIBVERSION ... 218
H5_OPEN .. 219

H5_PARSE .. 220
H5A_CLOSE ... 225

H5A_GET_NAME .. 226
H5A_GET_NUM_ATTRS .. 227

H5A_GET_SPACE .. 228
H5A_GET_TYPE .. 229

H5A_OPEN_IDX .. 230
H5A_OPEN_NAME .. 231

H5A_READ ... 232
H5D_CLOSE ... 233

H5D_GET_SPACE .. 234
H5D_GET_STORAGE_SIZE ... 235

H5D_GET_TYPE .. 236
Contents What’s New in IDL 5.6

7

H5D_OPEN ... 237
H5D_READ .. 238

H5F_CLOSE ... 241
H5F_IS_HDF5 .. 242

H5F_OPEN ... 243
H5G_CLOSE ... 244

H5G_GET_COMMENT ... 245
H5G_GET_LINKVAL .. 246

H5G_GET_MEMBER_NAME .. 247
H5G_GET_NMEMBERS ... 249

H5G_GET_OBJINFO ... 250
H5G_OPEN ... 252

H5I_GET_TYPE ... 253
H5R_DEREFERENCE ... 254

H5R_GET_OBJECT_TYPE ... 255
H5S_CLOSE ... 257

H5S_COPY ... 258
H5S_CREATE_SIMPLE .. 259

H5S_GET_SELECT_BOUNDS ... 261
H5S_GET_SELECT_ELEM_NPOINTS .. 262

H5S_GET_SELECT_ELEM_POINTLIST .. 263
H5S_GET_SELECT_HYPER_BLOCKLIST .. 265

H5S_GET_SELECT_HYPER_NBLOCKS .. 267
H5S_GET_SELECT_NPOINTS ... 268

H5S_GET_SIMPLE_EXTENT_DIMS .. 269
H5S_GET_SIMPLE_EXTENT_NDIMS ... 270

H5S_GET_SIMPLE_EXTENT_NPOINTS ... 271
H5S_GET_SIMPLE_EXTENT_TYPE .. 272

H5S_IS_SIMPLE .. 273
H5S_OFFSET_SIMPLE ... 274

H5S_SELECT_ALL ... 275
H5S_SELECT_ELEMENTS .. 276

H5S_SELECT_HYPERSLAB .. 278
H5S_SELECT_NONE .. 280

H5S_SELECT_VALID ... 281
H5T_CLOSE ... 282
What’s New in IDL 5.6 Contents

8

H5T_COMMITTED .. 283
H5T_COPY .. 284

H5T_EQUAL ... 285
H5T_GET_ARRAY_DIMS .. 286

H5T_GET_ARRAY_NDIMS .. 287
H5T_GET_CLASS .. 288

H5T_GET_CSET ... 290
H5T_GET_EBIAS ... 291

H5T_GET_FIELDS ... 292
H5T_GET_INPAD .. 294

H5T_GET_MEMBER_CLASS ... 295
H5T_GET_MEMBER_NAME ... 297

H5T_GET_MEMBER_OFFSET ... 298
H5T_GET_MEMBER_TYPE ... 299

H5T_GET_NMEMBERS .. 300
H5T_GET_NORM .. 301

H5T_GET_OFFSET .. 302
H5T_GET_ORDER ... 303

H5T_GET_PAD .. 304
H5T_GET_PRECISION .. 305

H5T_GET_SIGN ... 306
H5T_GET_SIZE .. 307

H5T_GET_STRPAD ... 308
H5T_GET_SUPER .. 309

H5T_IDLTYPE .. 310
H5T_MEMTYPE ... 312

H5T_OPEN .. 313
LA_CHOLDC .. 314

LA_CHOLMPROVE .. 317
LA_CHOLSOL ... 320

LA_DETERM ... 323
LA_EIGENPROBLEM .. 325

LA_EIGENQL .. 331
LA_EIGENVEC ... 337

LA_ELMHES ... 341
LA_GM_LINEAR_MODEL .. 344
Contents What’s New in IDL 5.6

9

LA_HQR .. 347
LA_INVERT .. 350

LA_LEAST_SQUARE_EQUALITY .. 352
LA_LEAST_SQUARES .. 355

LA_LINEAR_EQUATION ... 359
LA_LUDC .. 362

LA_LUMPROVE ... 365
LA_LUSOL .. 368

LA_SVD ... 371
LA_TRIDC ... 375

LA_TRIMPROVE .. 379
LA_TRIQL ... 383

LA_TRIRED .. 386
LA_TRISOL ... 388

MAP_PROJ_FORWARD .. 391
MAP_PROJ_INIT .. 396

MAP_PROJ_INVERSE ... 412
MATRIX_POWER .. 414

PRODUCT .. 416
REGISTER_CURSOR .. 419

SHMDEBUG ... 421
SHMMAP .. 423

Types Of Memory Segments .. 430
Reference Counts And Memory Segment Lifecycle .. 434

SHMUNMAP .. 438
SHMVAR .. 440

SKIP_LUN .. 444
SWAP_ENDIAN_INPLACE .. 447

TRUNCATE_LUN ... 449
WIDGET_COMBOBOX ... 451

WIDGET_TAB .. 459
WIDGET_TREE .. 467

Chapter 4:
Using the XML Parser Object Class .. 477
About XML ... 478
What’s New in IDL 5.6 Contents

10
About XML Parsers ... 478
Using the XML Parser ... 480

Subclassing the IDLffXMLSAX Object Class ... 480
Using Your Parser ... 483

Validation .. 483
Example: Reading Data Into an Array ... 485

Creating the xml_to_array Object Class ... 485
Using the xml_to_array Parser .. 490

Example: Reading Data Into Structures ... 492
Creating the xml_to_struct Object Class ... 492

Using the xml_to_struct Parser ... 498
Building Complex Data Structures .. 499

Index .. 501
Contents What’s New in IDL 5.6

Chapter 1:

Overview of New
Features in IDL 5.6
This chapter contains the following topics:
Visualization Enhancements 12
Analysis Enhancements 19

Language Enhancements 26
File Access Enhancements 33

Mapping Enhancements 37
IDLDE Enhancements 38

IDL GUIBuilder Enhancements 41
User Interface Toolkit Enhancements 42

New Personal Use Licensing 55

New Support for Macintosh OS X 56
Documentation Enhancements 57

New and Enhanced IDL Objects 60
New and Enhanced IDL Routines 89

ION 1.6 Enhancements 135
Routines Obsoleted in IDL 5.6 139

Requirements for this Release 140
Windows 98 Platform Support Ending . . 144
What’s New in IDL 5.6 11

12 Chapter 1: Overview of New Features in IDL 5.6
Visualization Enhancements

The following enhancements have been made to IDL’s visualization functionality for
the 5.6 release:

• Mesa Library Update

• Labels for Contour Objects

• Labels for Polyline Objects

• Labels for ISOCONTOUR

• New User-Defined Clipping Planes for Objects

• New Keyword to Determine the Maximum Number of Clipping Planes

• Enhancements for Displaying Points and Lines in Object Graphics

• OpenGL Hardware Support for Object Graphics on HP and Linux

• New User-Defined Cursor Registration

• New Keyword to PickData Method

Mesa Library Update

IDL 5.6 incorporates a new release of the Mesa library (version 4.0.1). This library is
used in IDL Object Graphics displays for platform independent software rendering
when the Object Graphics Software rendering preference is selected.

The benefits to this update are the following:

• Any graphical output derived when using software rendering in IDL conforms
to OpenGL standards since the Mesa 4.0 library passes the OpenGL
conformance suite.

• The Tesselator is much more robust, allowing it to tessellate complex and
degenerate polygons and TrueType fonts.

For information on the changes to the IDLgrTessellator object due to this upgrade,
see “New and Enhanced IDL Objects” on page 60. For information on the issues that
have been solved in IDL due to this update, see the IDL release notes.
Visualization Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 13
Labels for Contour Objects

IDL 5.6 now supports labeling of contour lines for the IDLgrContour object.

The following changes have been made to the IDLgrContour object class to support
this new functionality:

• New keywords to the IDLgrContour::Init method:

• AM_PM

• C_LABEL_INTERVAL

• C_LABEL_OBJECTS

• C_LABEL_NOGAPS

• C_LABEL_SHOW

• C_USE_LABEL_COLOR

Figure 1-1: New Labeling of Contour LInes Using IDLgrContour::Init
What’s New in IDL 5.6 Visualization Enhancements

14 Chapter 1: Overview of New Features in IDL 5.6
• C_USE_LABEL_ORIENTATION

• DAYS_OF_WEEK

• LABEL_FONT

• LABEL_FORMAT

• LABEL_FRMTDATA

• LABEL_UNITS

• MONTHS

• USE_TEXT_ALIGNMENTS

• New IDLgrContour::GetLabelInfo method.

• New IDLgrContour::AdjustLabel method.

For a description of the new keywords and methods, see “New and Enhanced IDL
Objects” on page 60.

Labels for Polyline Objects

IDL 5.6 now supports the labeling of polyline paths for IDLgrPolyline objects with
text and symbol objects. New keywords to the IDLgrPolyline::Init method which
support labeling of polyline paths are:

• LABEL_NOGAPS

• LABEL_POLYLINES

• LABEL_OFFSETS

• LABEL_OBJECTS

• LABEL_USE_VERTEX_COLOR

• USE_LABEL_COLOR

• USE_LABEL_ORIENTATION

• USE_TEXT_ALIGNMENTS

For a description of the new keywords, see “IDLgrPolyline::Init” on page 75.

In addition, the Data argument to IDLgrSymbol::Init now contains a new pre-defined
Arrow-Head (>) symbol (represented by the scalar 8). This allows you to easily add
arrowheads to the results of PARTICLE_TRACE.
Visualization Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 15
Labels for ISOCONTOUR

IDL 5.6 now supports the labeling of contour lines for the ISOCONTOUR routine.
New keywords to the ISOCONTOUR routine which support labeling of contour lines
are:

• C_LABEL_INTERVAL

• C_LABEL_SHOW

• OUT_LABEL_OFFSETS

• OUT_LABEL_POLYLINES

• OUT_LABEL_STRINGS

For a description of the new keywords, see “ISOCONTOUR” on page 115.

New User-Defined Clipping Planes for Objects

IDL 5.6 now adds a new CLIP_PLANES keyword for all atomic graphic object
classes and to IDLgrModel. This allows you to specify the coefficients of the clipping
planes you wish to be applied to an object and its children, if applicable. Multiple
clipping planes can be applied, up to the maximum number supported by the device.
The new keyword applies to the Init method of IDLgrAxis, IDLgrContour,
IDLgrImage, IDLgrModel, IDLgrPlot, IDLgrPolygon, IDLgrPolyline, IDLgrROI,
IDLgrROIGroup, IDLgrSurface, IDLgrText and IDLgrVolume.

For more information, see “IDL Object Method Enhancements” on page 61.

New Keyword to Determine the Maximum Number of
Clipping Planes

IDL 5.6 contains a new MAX_NUM_CLIP_PLANES keyword for the
GetDeviceInfo method to IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and
IDLgrVRML. This keyword returns an integer that specifies the maximum number of
user-defined clipping planes supported by the device for use with the new
CLIP_PLANES keyword to atomic graphic objects.

For more information, see “IDL Object Method Enhancements” on page 61.
What’s New in IDL 5.6 Visualization Enhancements

16 Chapter 1: Overview of New Features in IDL 5.6
Enhancements for Displaying Points and Lines in
Object Graphics

Point and line texture mapping allows you to more accurately control the color of a
line or point as well as control the alpha blending of a line or point to achieve
transparency effects.

IDL will now automatically render a texture map on an IDLgrPolygon or
IDLgrSurface object when:

• A valid IDLgrImage object is specified in the TEXTURE_MAP property.

• One of the following are set for the STYLE property:

• Points

• Wire mesh (IDLgrSurface only)

• Lines (IDLgrPolygon only)

• Filled

• RuledXZ (IDLgrSurface only)

• RuledYZ (IDLgrSurface only)

The following example demonstrates using a texture map on an IDLgrSurface object:

PRO ExTextureOnRoad

; Read elevation data file.
filename = FILEPATH('elevbin.dat', $

SUBDIRECTORY = ['examples', 'data'])
dim = 64
heightField = READ_BINARY(filename, $

DATA_DIMS = [dim, dim])

; Get the color data from a palette suitable for
; elevation.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 4
oPalette -> GetProperty, RED_VALUES = red, $

GREEN_VALUES = green, BLUE_VALUES = blue
OBJ_DESTROY, oPalette

; Create the texture.
; Colors correspond to height.
; Set alpha to be transparent where the elevation is
; zero (suggesting water level).
texture = BYTARR(4, dim, dim, /NOZERO)
Visualization Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 17
texture[0,*,*] = red[heightfield]
texture[1,*,*] = green[heightfield]
texture[2,*,*] = blue[heightfield]
alpha = BYTARR(dim,dim)
above = WHERE(heightField gt 0)
alpha[above] = 255
texture[3,*,*] = alpha
oTexture = OBJ_NEW('IDLgrImage', texture)

; Scale the geometry for better viewing
heightField = BYTSCL(heightField, TOP = 63) + 192

; Create textured surface model.
; Experiment with the STYLE property to see texturing
; effects for different styles.
oSurface = OBJ_NEW('IDLgrSurface', heightField, $

COLOR = [255, 255, 255], TEXTURE_MAP = oTexture, $
STYLE = 2)

; Create a "road" that is color coded with the texture
; to indicate elevation. The first (black) line shows
; the intended path of the road. The second line
; (textured and on top) shows the elevation of each
; point of the road, color coded with the texture. The
; missing sections of this line, where the black shows
; through, indicate where the road passes over water.
road = [[0, 10], [30, 20], [40, 30], [45, 50], $

[12, 50], [2, 35], [5, 20]]
oLine1 = OBJ_NEW('IDLgrPolygon', road, $

COLOR = [0, 0, 0], STYLE = 1, THICK = 5, $
ZCOORD_CONV = [191, 1])

oLine2 = OBJ_NEW('IDLgrPolygon', road, $
COLOR = [255, 255, 255], TEXTURE_MAP = oTexture, $
TEXTURE_COORD = FLOAT(road)/dim, STYLE = 1, $
THICK = 5, ZCOORD_CONV = [192, 1])

XOBJVIEW, [oSurface], /BLOCK, $
TITLE = 'Texture Map on Surface', $
XSIZE = 600, YSIZE = 400

XOBJVIEW, [oLine1, oLine2], /BLOCK, $
TITLE = 'Texture Map on Road Polygon', $
XSIZE = 600, YSIZE = 400

OBJ_DESTROY, [oTexture, oSurface, oLine1, oLine2]

END
What’s New in IDL 5.6 Visualization Enhancements

18 Chapter 1: Overview of New Features in IDL 5.6
OpenGL Hardware Support for Object Graphics on
HP and Linux

IDL 5.6 now includes OpenGL hardware support for object graphics on the HP and
Linux platforms. OpenGL support is set by default and may be changed from the
IDLDE by selecting File → Preferences → Graphics.

Note
On the HP-UX platform, the indexed color model is not supported by the OpenGL
hardware accelerator. IDL reverts to software rendering if the color model property
of a destination object is set to indexed color (1).

New User-Defined Cursor Registration

IDL 5.6 now supports user-defined cursor registration by means of the new
REGISTER_CURSOR procedure. This allows you to define a bitmap to display as
the cursor in an IDLgrWindow to indicate the mouse position. Once a new cursor is
registered, it is accessible via the IDLgrWindow::SetCurrentCursor method.

For more information see “REGISTER_CURSOR” on page 419 and
“IDLgrWindow::SetCurrentCursor” on page 88.

New Keyword to PickData Method

The new PICK_STATUS keyword to the PickData method of the IDLgrBuffer and
IDLgrWindow allows you to retrieve information about individual pixels within a
pick box defined using the DIMENSIONS keyword.

For more information on the PICK_STATUS keyword, see
“IDLgrWindow::PickData” on page 87.
Visualization Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 19
Analysis Enhancements

The following enhancements have been made to IDL’s data analysis functionality for
the 5.6 release:

• New LAPACK Linear Algebra Routines

• New DIAG_MATRIX Function

• New MATRIX_POWER Function

• New PRODUCT Function

• New Run-length Encoding for ROI Masks

• New Complex Input Support

• Enhancements to ATAN

• Enhancements to the BESEL Functions

• Enhancement to the CURVEFIT Function

• Enhancements to the EXPINT Function

• Enhancements to the GAUSSFIT Function

• Enhancements to the MEDIAN Function
What’s New in IDL 5.6 Analysis Enhancements

20 Chapter 1: Overview of New Features in IDL 5.6
New LAPACK Linear Algebra Routines

The LAPACK numerical library has been integrated into IDL to give you more robust
and accurate algorithms for solving systems of linear equations, singular value
decomposition, solving eigenvalue problems, and for linear least-squares
calculations. IDL 5.6 includes 23 new routines that use the included LAPACK linear
algebra package. These routines are from the CLAPACK library, based on the
FORTRAN LAPACK version 3.0 library. For more information visit the Netlib
Repository at http://www.netlib.org. For more details see Anderson et al.,
LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Sixteen of the new LAPACK routines supply similar functionality to existing
Numerical Recipes routines. In these cases, the names have been taken from the
Numerical Recipes routine, with the addition of the LA_ prefix. Note however that
the LAPACK routine may not accept the same arguments or keywords as the
Numerical Recipes routine. Also, because of differences in algorithms between
LAPACK and Numerical Recipes, the results for the same procedure may have
different numerical values or different ordering.

In general, compared to Numerical Recipes, the LAPACK routines are more robust
and accurate, may be faster, and also handle complex numbers.

Note
For LAPACK routines that accept arrays, the arrays are expected to be in IDL's
column-major format, where the first dimension represents the columns and the
second dimension represents the rows. Internally, a transpose is automatically
applied before the array is passed to the LAPACK C routine. Likewise, a transpose
is applied to the result before it is returned to the user.

The following table lists the available LAPACK routines, along with a short
description, Asterisks mark routines that also have a corresponding Numerical
Recipes routine in IDL.

Linear Equations

LAPACK Routine Description

LA_CHOLDC* Cholesky factorization.

LA_CHOLMPROVE Improve solution using Cholesky
factorization.

Table 1-1: Linear Equation Routines
Analysis Enhancements What’s New in IDL 5.6

http://www.netlib.org

Chapter 1: Overview of New Features in IDL 5.6 21
Note
* Has a corresponding Numerical Recipes routine.

Eigenvalues and Eigenvectors

LA_CHOLSOL* Solve linear equations using Cholesky.

LA_DETERM* Array determinant using LU decomposition.

LA_INVERT* Array inverse using LU decomposition.

LA_LINEAR_EQUATION Solve linear equations using LU
decomposition.

LA_LUDC* LU decomposition.

LA_LUMPROVE* Improve solution using LU decomposition.

LA_LUSOL* Solve linear equations using LU
decomposition.

LA_TRIDC LU decomposition of tridiagonal array.

LA_TRIMPROVE Improve solution of a tridiagonal problem.

LA_TRISOL* Solve linear equations with a tridiagonal
array.

LAPACK Routine Description

LA_EIGENPROBLEM Eigenvalues and eigenvectors with error
estimates for nonsymmetric arrays.

LA_EIGENQL* Compute selected eigenvalues and
eigenvectors for symmetric or Hermitian
array.

LA_EIGENVEC* Selected eigenvectors of nonsymmetric
array.

Table 1-2: Eigenvalue and Eigenvector Routines

LAPACK Routine Description

Table 1-1: Linear Equation Routines
What’s New in IDL 5.6 Analysis Enhancements

22 Chapter 1: Overview of New Features in IDL 5.6
Note
* Has a corresponding Numerical Recipes routine.

Linear Least Squares

Singular Value Decomposition

Note
* The corresponding Numerical Recipes routine is SVDC.

For more information on these new routines, see Chapter 3, “New IDL Routines”.

LA_ELMHES* Reduce nonsymmetric array to upper
Hessenberg.

LA_HQR* Eigenvalues of upper Hessenberg.

LA_TRIQL* Eigenvalues and eigenvectors of
tridiagonal array.

LA_TRIRED* Reduce symmetric array to tridiagonal.

LAPACK Routine Description

LA_GM_LINEAR_MODEL Solve general Gauss-Markov linear model.

LA_LEAST_SQUARE_EQUALITY Solve linear least-squares problem with
constraint.

LA_LEAST_SQUARES Solve linear least-squares problem.

Table 1-3: Linear Least Square Routines

LAPACK Routine Description

LA_SVD* Singular value decomposition.

Table 1-4: Singular Value Decompositon Routine

LAPACK Routine Description

Table 1-2: Eigenvalue and Eigenvector Routines
Analysis Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 23
New DIAG_MATRIX Function

The new DIAG_MATRIX function constructs a diagonal matrix from an input vector,
or if given a matrix, then DIAG_MATRIX will extract a diagonal vector.

For more details, see “DIAG_MATRIX” on page 193.

New MATRIX_POWER Function

The new MATRIX_POWER function computes the product of a matrix with itself.
For example, the fifth power of array A is A # A # A # A # A. Negative powers are
computed using the matrix inverse of the positive power.

The result is a square array containing the value of the matrix raised to the specified
power. A power of zero returns the identity matrix.

For more details, see “MATRIX_POWER” on page 414.

New PRODUCT Function

The new PRODUCT function returns the product of elements within an array. The
product of the array elements can also be computed over a given dimension. This new
routine is similar to the TOTAL function used to sum elements within an array.

For more details, see “PRODUCT” on page 416.

New Run-length Encoding for ROI Masks

In IDL 5.6, you can now return a run-length encoded result for an ROI mask. For
large ROIs, a considerable savings in space results. With the new RUN_LENGTH
keyword set for IDLanROI:ComputeMask or IDLanROIGroup::ComputeMask
methods, the ROI mask result is a vector wherein each even-numbered subscript
contains the length of the run, and the following element contains the starting index
of the run.

For a description of the new keywords, see “IDLanROI::ComputeMask” on page 61
and “IDLanROIGroup::ComputeMask” on page 61.

New Complex Input Support

IDL 5.6 now supports complex input arguments for the following routines; GAMMA,
LNGAMMA, BETA, IBETA, IGAMMA, ERF, ERFC, and ERFCX.

For more information, see “IDL Routine Enhancements” on page 111.
What’s New in IDL 5.6 Analysis Enhancements

24 Chapter 1: Overview of New Features in IDL 5.6
Enhancements to ATAN

The new PHASE keyword to the ATAN function can be used to compute ATAN
(Imaginary(Z), Real_part(Z)), but uses less memory and is faster. This new keyword
restores functionality provided by ATAN in IDL versions prior to 5.5.

For more information see “ATAN” on page 111.

Enhancements to the BESEL Functions

The new DOUBLE keyword to IDL’s Bessel functions allows you to specify whether
the functions should return a single- or a double-precision result.

The new ITER keyword to IDL’s Bessel functions allows you to retrieve the
maximum number of iterations for which the function will converge for a given
value.

For more information on these new keywords, see “BESELI, BESELJ, BESELK,
BESELY” on page 111.

Enhancement to the CURVEFIT Function

The new YERROR keyword to CURVEFIT can be set to a named variable that will
contain the standard error between YFIT and Y.

For more information on this new keyword, see “CURVEFIT” on page 112.

Enhancements to the EXPINT Function

The new ITER keyword to EXPINT defines a named variable that will contain the
actual number of iterations performed.

For more information on this new keyword, see “EXPINT” on page 113.

Enhancements to the GAUSSFIT Function

The following enhancements have been made to the GAUSSFIT function:

• The new YERROR keyword to GAUSSFIT returns the error associated with
the fit.

• The new SIGMA keyword to GAUSSFIT can be set to a named variable that
will contain the 1-sigma error estimates of a returned parameters.
Analysis Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 25
• The new CHISQ keyword to GAUSSFIT can be set to a named variable that
will contain the value of the chi-square goodness-of-fit.

For more information on these new keywords, see “GAUSSFIT” on page 114.

Enhancements to the MEDIAN Function

The new DIMENSION keyword to MEDIAN can be set to the dimension over which
to find the median values of an array.

For more information on this new keyword, see “MEDIAN” on page 117.
What’s New in IDL 5.6 Analysis Enhancements

26 Chapter 1: Overview of New Features in IDL 5.6
Language Enhancements

The following enhancements have been made to the core of the IDL Language for the
5.6 release:

• New Stride Syntax for Array Subscripts

• New Shared Memory Support

• New and Enhanced File Handling Routines

• New SWAP_ENDIAN_INPLACE Procedure

• New Keywords to SWAP_ENDIAN Function

• Enhancements to the EXPAND_PATH Function

• Enhancements to the MAKE_DLL Procedure

• New STRICTARRSUBS Option to COMPILE_OPT

• Large File Support for AIX and Linux Platforms

• Large File Support For Compressed Files

• 64-bit Memory Support On More Platforms

• Thread Pool and Multi-Threading Support On AIX and Mac OS X

• Enhancements to the KEYWORD_SET Function

New Stride Syntax for Array Subscripts

You can now simplify your coding by specifying array subscript ranges using strides,
or subscripting increments. The syntax [e0:e1:e2] denotes every e2th element within
the range of subscripts e0 through e1 (e0 must not be greater than e1). e2 is referred to
as the subscript stride. The stride value must be greater than or equal to 1. If it is set
to the value 1, the resulting subscript expression is identical in meaning to [e0:e1], as
described above.

For example, if the variable VEC is a 50-element vector, VEC[5:13:2] is a five-
element vector composed of VEC[5], VEC[7], VEC[9], VEC[11], and VEC[13].
Language Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 27
The following table summarizes the possible forms of subscript ranges:

For additional information, see Chapter 6, “Arrays” in the Building IDL Applications
manual.

New Shared Memory Support

Four new IDL routines allow you to map anonymous shared memory, or local disk
files, into the memory address space of the currently executing IDL process. Mapped
memory segments are associated with an IDL array specified by the user.

Additionally, the new SHARED_MEMORY keyword to the HELP procedure can be
used to display information about all current shared memory and memory mapped
file segments mapped into the current IDL process via the SHMMAP procedure.

Form Description

e A simple subscript expression

e0:e1 Subscript range from e0 to e1

e0:e1:e2 Subscript range from e0 to e1 with a stride of e2

e0:* All points from element e0 to end

e0:*:e2 All points from element e0 to end with a stride of e2

* All points in the dimension

Table 1-5: Subscript Ranges

Shared Memory
Routine

Description

SHMDEBUG Debugs shared memory problems.

SHMMAP Maps memory or disk files into IDL’s
memory address space.

SHMUNMAP Unmaps memory mapped with SHMMAP.

SHMVAR Creates an IDL array variable that uses
memory from a mapped memory segment.

Table 1-6: Routines for Shared Memory Support
What’s New in IDL 5.6 Language Enhancements

28 Chapter 1: Overview of New Features in IDL 5.6
Warning
Unlike most IDL functionality, incorrect use of the shared memory routines can
corrupt or even crash your IDL process. Proper use of these low level operating
system features requires systems programming experience, and is not recommended
for those without such experience. You should be familiar with the memory and file
mapping features of your operating system and the terminology used to describe
such features.

For more information, see “New IDL Routines” on page 89.

New and Enhanced File Handling Routines

New file handling routines in IDL 5.6 further enhance your ability to manipulate files
from within IDL.

Routine Description

COPY_LUN Copies data between two open files.

FILE_COPY Copies files, or directories of files, to a new
location.

FILE_LINES Returns the number of lines of text contained
within the specified file or files.

FILE_LINK Creates UNIX file links, both regular (hard) and
symbolic.

FILE_MOVE Renames files and directories.

FILE_READLINK Returns the path pointed to by UNIX symbolic
links.

FILE_SAME Determines if two different file names refer to the
same underlying file.

SKIP_LUN Reads data in an open file and moves the file
pointer.

TRUNCATE_LUN Truncates the contents of a file open for write
access at the current position of the file pointer.

Table 1-7: New IDL File Handling Routines
Language Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 29
The FILE_DELETE procedure has been enhanced to allow for more control with
error reporting. Two new keywords have been added:

• ALLOW_NONEXISTENT — Quietly ignores attempts to delete a non-
existent file.

• VERBOSE — Issues informative messages for every file deleted.

For more information, see “New IDL Routines” on page 89.

New SWAP_ENDIAN_INPLACE Procedure

The new SWAP_ENDIAN_INPLACE procedure reverses the byte ordering of
arbitrary scalars, arrays or structures. It can make “big endian” numbers “little
endian” and vice-versa.

Note
The BYTEORDER procedure can be used to reverse the byte ordering of scalars
and arrays (SWAP_ENDIAN_INPLACE also allows structures).

For more information, see “SWAP_ENDIAN_INPLACE” on page 447.

New Keywords to SWAP_ENDIAN Function

Two new keywords have been added to the SWAP_ENDIAN function:
SWAP_IF_BIG_ENDIAN and SWAP_IF_LITTLE_ENDIAN. These keywords add
the functionality available in the BYTEORDER routine to SWAP_ENDIAN.

For more information, see “SWAP_ENDIAN” on page 118.

Enhancements to the EXPAND_PATH Function

The EXPAND_PATH function has been enhanced to use the same expansion of the
path-definition string as is done by IDL when initializing the !PATH system variable
from the IDL_PATH environment variable at startup. This means that in addition to
expanding the “+” syntax in the path definition string, EXPAND_PATH also properly
expands the special path-definition tokens <IDL_DEFAULT>, <IDL_BIN_DIRNAME>,
and <IDL_VERSION_DIRNAME>.

Note
This functionality has also been added to the way path preferences are set in the
IDL Development Environment. See “Changes to Path Preferences” on page 39 for
details.
What’s New in IDL 5.6 Language Enhancements

30 Chapter 1: Overview of New Features in IDL 5.6
Enhancements to the MAKE_DLL Procedure

If the new REUSE_EXISTING keyword to the MAKE_DLL procedure is set, and the
sharable library file specified by OutputFile already exists, MAKE_DLL returns
without building the sharable library again. Use this keyword in situations where you
wish to ensure that a library exists, but only want to build it if it does not. Combining
the REUSE_EXISTING and DLL_PATH keywords allows you to get a path to the
library in a platform independent manner, building the library only if necessary.

For more information on this keyword, see “MAKE_DLL” on page 117.

New STRICTARRSUBS Option to COMPILE_OPT

The STRICTARRSUBS option has been added to the COMPILE_OPT statement.
When IDL subscripts one array using another array as the source of array indices, the
default behavior is to clip any out-of-range indices into range and then quietly use the
resulting data without error. This behavior is described in “Array Subscripts” in
Chapter 6 of the Building IDL Applications manual. Specifying STRICTARRSUBS
will instead cause IDL to treat such out-of-range array subscripts within the body of
the routine containing the COMPILE_OPT statement as an error. The position of the
STRICTARRSUBS option within the module is not important: all subscripting
operations within the entire body of the specified routine will be treated this way.

Large File Support for AIX and Linux Platforms

IDL 5.6 now supports accessing files larger than 2.1 GB on AIX and Linux. You now
can use the 64-bit integer data type to read and write data from files on the following
platforms that support the use of a large file capable file system:

• Windows (with NTFS file system)

• AIX

• Linux

• SUN Solaris

• HP-UX

• SGI Irix

• Compaq Tru64 UNIX

IDL sets the !VERSION.FILE_OFFSET_BITS system variable to 64 on platforms
where it has large file support.
Language Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 31
Note for AIX Users

Customers attempting to use large file functionality under AIX need to be aware of
the following:

• By default, AIX imposes a file size limit of 2097151 512-byte blocks on all
processes. This will limit the size of files you can access. One solution is to set
the fsize parameter in /etc/security/limits to a larger value, or -1 to
remove the limit entirely. Users will have to log out and back in to see the
benefit of this change.

• By default, local AIX filesystems are not large file capable, and will refuse to
hold files larger than 2.1GB in length. This per-filesystem attribute is set when
the filesystem is created, and cannot be changed without destroying and re-
creating it.

Large File Support For Compressed Files

On platforms that support large files (!VERSION.FILE_OFFSET_BITS is 64), IDL's
support for compressed files (COMPRESS keyword to OPEN or SAVE procedures)
is now able to read and write compressed files of any length. In previous releases,
IDL's support for such files was 32-bit limited.

64-bit Memory Support On More Platforms

A 64-bit program is a program that uses 64-bit memory addresses. Such a program
has the ability to access extremely large amounts of memory, well beyond the 2.1GB
barrier that exists for 32-bit programs. Previous to this release, 64-bit versions of IDL
were supported on the Solaris/Sparc and Compaq Tru64 UNIX platforms. Other
versions of IDL were built as 32-bit programs and were limited to the 32-bit memory
address that implies. With IDL 5.6, the IBM AIX, SGI IRIX, and HP-UX versions are
also available in both 32- and 64-bit form (similar to Solaris/Sparc IDL which comes
in both 32- and 64-bit versions).

Thread Pool and Multi-Threading Support On AIX and
Mac OS X

Support for the IDL Thread Pool, which was first released in IDL 5.5, is now
supported on the AIX platform. It is also supported on the new Mac OS X platform.
The Thread Pool is now supported on all IDL platforms.

See Chapter 15, “Multithreading in IDL” in the Building IDL Applications manual
for more information.
What’s New in IDL 5.6 Language Enhancements

32 Chapter 1: Overview of New Features in IDL 5.6
Enhancements to the KEYWORD_SET Function

The KEYWORD_SET function returns true if its argument is defined and is nonzero,
and false (0) otherwise. The specific rules by which the value is determined are given
in the IDL Reference Guide. With IDL 5.6, there has been a small change to these
rules, designed to make KEYWORD_SET useful in a larger number of cases.
Previously, KEYWORD_SET would return true if it's argument was an array,
regardless of the value. This behavior has been changed: Arrays with more than 1
element are treated as before, but 1-element arrays are treated in the same way as
scalar arguments, and the value returned by KEYWORD_SET depends on the value
of the element.
Language Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 33
File Access Enhancements

The following enhancements have been made in the area of File Access in the IDL
5.6 release:

• New Support for ITIFF

• New XML Parser Object

• New HDF5 Routines

• New H5_BROWSER Routine

• HDF and HDF-EOS Library Updates

• Enhanced Support for Shapefiles

New Support for ITIFF

IDL 5.6 now supports reading and writing TIFF files containing JPEG compression
(ITIFF). The READ_TIFF, WRITE_TIFF, and QUERY_TIFF routines now support
ITIFF. A new option has been added to the COMPRESSION keyword to the
WRITE_TIFF routine to support the creation of ITIFF files.

For more information, see “WRITE_TIFF” on page 133.

New XML Parser Object

XML is “eXtensible Markup Language,” a popular standard for sharing data across
networks and on the World Wide Web. In IDL 5.6, the new IDLffXMLSAX object
class implements a SAX 2 XML parsing engine, ideal for extracting data from large
XML files. The new object class allows you to extract data from XML data files and
store it in IDL data structures. See “IDLffXMLSAX object” on page 146 for a
description of the object class and its methods.

Using the XML parser requires that you write a custom subclass of the
IDLffXMLSAX object class, overriding the superclass’s method routines to read a
given XML file and store the data as necessary. See Chapter 4, “Using the XML
Parser Object Class” for a detailed description of how to use the XML parser object
class.
What’s New in IDL 5.6 File Access Enhancements

34 Chapter 1: Overview of New Features in IDL 5.6
New HDF5 Routines

You can now query and read HDF5 files in IDL. This hierarchical data storage format
was developed by the NCSA to address limitations in HDF4. Several widely-used
data products are expected to be distributed in the HDF5 format, including data from
NASA's EOS Aura satellite. IDL continues to support HDF4 as well.

The new HDF5 library of routines in IDL 5.6 are in a dynamically-loadable module
(DLM) that provides access to the HDF5 library.

The IDL HDF5 library contains the following function categories:

For more information, see Chapter 3, “New IDL Routines”.

Prefix Category Purpose

H5 Library General library tasks

H5A Attribute Manipulate attribute datasets

H5D Dataset Manipulate general datasets

H5F File Create, open, and close files

H5G Group Handle groups of other groups or datasets

H5I Identifier Query object identifiers

H5R Reference Reference identifiers

H5S Dataspace Handle dataspace dimensions and selection

H5T Datatype Handle datatype element information

Table 1-8: HDF 5 Function Categories
File Access Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 35
New H5_BROWSER Routine

The new H5_BROWSER presents a graphical user interface for viewing and reading
HDF5 files. The browser provides a tree view of the HDF5 file or files, a data
preview window, and an information window for the selected objects. The browser
may be created as either a selection dialog with Open/Cancel buttons, or as a
standalone browser that can import data to the IDL main program level.

For more information, see “H5_BROWSER” on page 214.

Figure 1-2: The New HDF 5 Browser
What’s New in IDL 5.6 File Access Enhancements

36 Chapter 1: Overview of New Features in IDL 5.6
HDF and HDF-EOS Library Updates

IDL 5.6 now supports the current versions of the HDF4 and HDF-EOS libraries. HDF
is now supported to version 4.1r5 and HDF-EOS is now supported to version 2.8.

Note
On the AIX platform, the HDF and HDF-EOS libraries were not updated. They
remain at 4.1r3 for HDF and 2.4.

Enhanced Support for Shapefiles

IDL 5.6 now allows you to access the dBASE table (.dbf) component of a shapefile
without opening any other components of the shapefile.

For more information, see “IDL Object Method Enhancements” on page 61.
File Access Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 37
Mapping Enhancements

The list of map projection types available in IDL has been greatly expanded with the
addition of the USGS General Cartographic Transformation Package. New routines
allow you to set up projections, transform coordinates between projections, and split
and clip polygons and polylines to fit your map.

MAP_PROJ_INIT Function

The MAP_PROJ_INIT function establishes the coordinate conversion mechanism for
mapping points on a globe’s surface to points on a plane, according to either one of
the IDL projections or one of the General Cartographic Transformation Package
(GCTP) map projections. Unlike MAP_SET, this function does not modify the !MAP
system variable, but rather returns a !MAP structure variable that can be used by the
map transformation functions MAP_PROJ_FORWARD and MAP_PROJ_INVERSE.

For more information, see “MAP_PROJ_INIT” on page 396.

MAP_PROJ_FORWARD, and MAP_PROJ_INVERSE Functions

These functions transform map coordinates between latitude/longitude and Cartesian
(X, Y) coordinates. Both functions can use the map transformation values from either
the !MAP system variable or a !MAP structure created by MAP_PROJ_INIT.

See “MAP_PROJ_FORWARD” on page 391 and “MAP_PROJ_INVERSE” on
page 412 for details.
What’s New in IDL 5.6 Mapping Enhancements

38 Chapter 1: Overview of New Features in IDL 5.6
IDLDE Enhancements

The IDL Development Environment has been enhanced in the following ways for the
5.6 release:

• Copying and Pasting Multiple IDL Code Lines

• Block Comments

• Changes to Path Preferences

Copying and Pasting Multiple IDL Code Lines

IDL 5.6 for Windows now offers the ability to paste multiple lines of text from the
clipboard to the command line. This functionality has been available in previous
versions for the UNIX IDLDE. The multi-line command line paste functionality is
simple to use. As with the earlier IDLDE, the user needs to merely place some text in
the clipboard and paste it into the command line. Any source of text is valid, with
emphasis on the requirement that the text be convertible to ASCII. When copying text
from an IDE editor, the selection mode can be stream, line, or box.

Note
Line and box modes automatically put a trailing carriage return at the end of the
text. When pasted, the last line is executed.

The new functionality should only be used with IDL commands that are contained on
one line each, which includes statements that utilize continuation markers ($). Multi-
line statements will produce unintended IDL interpreter behavior or errors.

Lines are transferred to the command line as is. Namely, leading white space is not
removed and comment lines are sent to the IDL interpreter without distinction.

Note
Tabs are converted to white space based on the tab size indicated by the IDE editor
preferences.
IDLDE Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 39
Block Comments

In IDL 5.6, the text editor in the IDLDE has been improved to allow quick
commenting and uncommenting of code blocks. Previously, comments had to be
manually entered using the comment symbol, line by line. To comment lines of code,
you may either select the entire block of uncommented lines to be commented or you
may simply places the cursor somewhere on the desired line. Commenting and
uncommenting can be performed using:

• The Edit → Comment or Edit → Uncomment menu items

• The IDL Editor window's context menu

• The toolbar

Changes to Path Preferences

The path preferences mechanism used by the IDLDE has been modified in this
release.

The IDLDE Path Preferences dialog now uses the same mechanism to expand the
elements of the IDL File Search Path field as is used by the EXPAND_PATH
function. By default, this field is populated with a single entry: <IDL_DEFAULT>. If
the IDL_PATH environment variable is not set when the IDLDE starts up, it will
expand this token into the default value of the !PATH system variable.

Note
If you have set the IDL_PATH environment variable, IDL will set the !PATH system
variable based on the contents of the IDL_PATH environment variable at startup,
overriding any settings made in the Path Preferences dialog. However, after IDL
has started, you can modify the current value of the !PATH system variable using
this dialog. See “!PATH” in the IDL Reference Guide manual for additional details
on how !PATH is set.

Figure 1-3: Comment (left) and Uncomment (right) Toolbar Icons
What’s New in IDL 5.6 IDLDE Enhancements

40 Chapter 1: Overview of New Features in IDL 5.6
Setting Path Preferences

If the box to the left of a path element in the Path Preferences dialog is checked, all
directories below the listed directory that contain at least one .pro or .sav file will
be included in the !PATH system variable. (This mechanism is analogous to the use of
a “+” symbol in an EXPAND_PATH path definition string.)

Note
If the <IDL_DEFAULT> entry is present, the box to its left is greyed out, indicating
that the token will always be expanded.

You can modify the value of the !PATH system variable in the following ways using
this dialog:

• Change the order of the path elements — using the up- and down-arrows,
you can reorder the path elements. When searching the directories in the
!PATH system variable for files, IDL will use the first matching file it finds. If
you have multiple files with the same name in different directories within
!PATH, you may need to adjust the order in which the directories are scanned.

• Insert... — To add a path to the IDL Files Search Path list, click on Insert...
to display the Select Path dialog. The new path is inserted before the first
selected path. If none of the paths are selected, the new path is appended to the
end of the list.

• Insert Standard Libraries — Click Insert Standard Libraries to insert the
<IDL_DEFAULT> path element into the list.

• Remove — Click on Remove to delete the selected path.

• Expand — Click on Expand to include the individual subdirectories of the
selected path element in the Files Search Path list. When you click Expand,
the checkmark is removed from the original path element, since the
subdirectories are now explicitly included in the path search list.
IDLDE Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 41
IDL GUIBuilder Enhancements

The following enhancements have been made to the IDL GUIBuilder in IDL 5.6. For
more information on how to use these new features, see Chapter 23, “Using the
IDL GUIBuilder” in the Building IDL Applications manual.

Support for Tab Widget

The new tab widget is available for inclusion in interfaces built with the GUIBuilder.

Support for Tree Widget

The new tree widget is available for inclusion in interfaces built with the GUIBuilder.

Support for Context Events

Event handlers for context events (triggered when the user clicks the right-hand
mouse button) have been added to the property sheets for the base, list, text, and tree
widgets.

Support for Tooltips

Support for tooltips has been added to the property sheets for the button and draw
widgets.

Support for Checked Menu Items

Support for checked menu items has been added to the menu editor.

Support for Sunken Labels

Support for sunken labels has been added to the property sheet for the label widget.

Support for Move, Iconify, and Size Events for Base Widgets

Support for move, iconify, and size events has been added to the property sheet for
the base widget.

Support for Keyboard Events for Draw Widget

Support for keyboard events has been added to the property sheet for the draw
widget.
What’s New in IDL 5.6 IDL GUIBuilder Enhancements

42 Chapter 1: Overview of New Features in IDL 5.6
User Interface Toolkit Enhancements

The following enhancements have been made to IDL’s UI toolkit for the 5.6 release to
help you give your IDL applications more powerful and friendly user interfaces:

• New COM Functionality

• New Combobox Widget

• New Tab Widget

• New Tree Widget

• Table Widget Enhancements

• Move, Iconify, Size Events for Base Widgets

• Color Bitmap Buttons from Array Data

• Push and Toggle Buttons

• Checkmarks on Menu Buttons

• Tooltips for Button and Draw Widgets

• Keyboard Events for Draw Widgets

• Scrolling Draw Widget Enhancements

• Label Widget Enhancements

• Enhancements to WIDGET_INFO
User Interface Toolkit Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 43
New COM Functionality

The IDLcomIDispatch object class and its use are now described in detail in “Using
COM Objects in IDL” in Chapter 4 of the External Development Guide manual. The
IDLcomIDispatch object has been enhanced in the following ways:

Support for Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is now passed along to COM object methods called on
IDLcomIDispatch objects, and to the IDLcomIDispatch::GetProperty method. This
means that if an argument is not required by the underlying COM object method, it
can be omitted from the method call used on the IDLcomIDispatch object.

Support for Default Values

COM allows objects to specify a default value for any method arguments that are
optional. If a call to a method that has an optional argument with a default value omits
the optional argument, the default value is used. IDL now behaves in the same way as
COM when calling COM object methods on IDLcomIDispatch objects, and when
calling the IDLcomIDispatch::GetProperty method.

Support for Argument Skipping

COM allows methods with optional arguments to accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL now provides the same functionality for COM object methods called on
IDLcomIDispatch objects, but not for the IDLcomIDispatch::GetProperty or
SetProperty methods.

Support for Function Return Values

The original IDL COM subsystem managed function return values through the use of
an extra parameter added to the method call. With the addition of optional arguments,
this method for retrieving return values is no longer valid. IDL now handles function
return values from COM function methods in the same way as IDL functions, using
the syntax:

Result = oCOM->Method(arg1, arg2)
What’s New in IDL 5.6 User Interface Toolkit Enhancements

44 Chapter 1: Overview of New Features in IDL 5.6
Additional COM Type Mappings

Support for the following COM data types has been added:

New Combobox Widget

The new WIDGET_COMBOBOX function creates comboboxes, which are similar to
droplists. The main difference between the combobox widget and the droplist widget
is that the combobox widget has an editable text field allowing a value to be entered
that is not in the list.

For more information, see “WIDGET_COMBOBOX” on page 451.

COM Type IDL Type

BOOL (VT_BOOL) Byte (true =1, false=0)

ERROR (VT_ERROR) Long

CY (VT_CY) Long64

DATE (VT_DATE) Double

I1 (VT_I1) Byte

INT (VT_INT) Long

UINT (VT_UINT) Unsigned Long

VT_USERDEFINED The IDL type is passed through.

Table 1-9: New IDL-COM Data Type Mappings

Figure 1-4: Combobox Created Using the New WIDGET_COMBOBOX Function
User Interface Toolkit Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 45
Note
WIDGET_COMBOBOX is not currently available on Compaq True64 UNIX
platforms due to that platform’s lack of support for the necessary Motif libraries.

New Tab Widget

The new WIDGET_TAB function is used to create a tab widget. Tab widgets present
a display area on which different pages (base widgets and their children) can be
displayed by selecting the appropriate tab. The titles of the tabs are the values of the
TITLE keyword for each of the tag widget’s child base widgets.

For more information, see “WIDGET_TAB” on page 459.

New Tree Widget

The new WIDGET_TREE function is used to create and populate a tree widget. The
tree widget presents a hierarchical view that can be used to organize a wide variety of
data structures and information.

For more information, see “WIDGET_TREE” on page 467.

Figure 1-5: Tabs Created Using the New WIDGET_TAB Function

Figure 1-6: A Tree Widget Created Using the New WIDGET_TREE Function
What’s New in IDL 5.6 User Interface Toolkit Enhancements

46 Chapter 1: Overview of New Features in IDL 5.6
Table Widget Enhancements

The table widget has been enhanced in the following ways:

Disjoint Cell Selection

Table widgets can now be configured to allow selection of multiple disjoint
rectangular groups of cells.

• Use the DISJOINT_SELECTION keyword to WIDGET_TABLE to create a
table with this behavior. For more information on this new keyword, see
“WIDGET_TABLE” on page 133.

• Use the new TABLE_DISJOINT_SELECTION keyword to
WIDGET_CONTROL to change the state of an existing table. For more
information on this new keyword, see “WIDGET_CONTROL” on page 121.

• Use the new TABLE_DISJOINT_ SELECTION keyword to WIDGET_INFO
to determine the current state of an existing table. For more information on this
new keyword, see “WIDGET_INFO” on page 129.

Note
If the USE_TABLE_SELECT keyword to WIDGET_CONTROL is set, the values
returned or expected by the following keywords are modified by the selection mode:
ALIGNMENT, COLUMN_WIDTHS, DELETE_COLUMNS, DELETE_ROWS,
FORMAT, GET_VALUE, ROW_HEIGHTS, and SET_VALUE.

For more on table selection modes, see “Using Table Widgets” in Chapter 26 of the
Building IDL Applications manual.

New Deselection Event

A new event (TYPE = 9) is generated by the table widget when selected cells are de-
selected by the user and the table is in disjoint selection mode. This event’s structure
is identical to the WIDGET_TABLE_CELL_SEL event structure (TYPE = 4) except
for the name and type value.

This event occurs when the user holds down the Control key when starting a
selection and the cell used to start the selection already selected. In contrast, if the
user starts a selection with the Control key down but starts on a cell that is not
selected, the normal WIDGET_TABLE_CELL_SEL event is generated.

{WIDGET_TABLE_CELL_DESEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:9,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L}
User Interface Toolkit Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 47
The range of cells selected is given by the zero-based indices into the table specified
by the SEL_LEFT, SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields.

Cell Selection and Edit Mode

The mechanisms by which an individual table cell is placed in edit mode (that is,
made available for interactive editing by the user) have been enhanced to be easier to
use. For example, selecting a cell for editing now automatically selects the cell’s
contents and positions the cursor to the right of the text.

For a complete list of user actions and their effects on cell selection and edit mode,
see “Using Table Widgets” in Chapter 26 of the Building IDL Applications manual.

Blanking Table Cells

Use the new TABLE_BLANK keyword to WIDGET_CONTROL to cause table cells
to be blanked or restored programmatically.

For more information on this new keyword, see “WIDGET_CONTROL” on
page 121.

Move, Iconify, Size Events for Base Widgets

Top-level base widgets can now be configured to generate events when the base is
moved or iconified. Additionally, an existing base can now be reconfigured to modify
the resize event after creation.

For more information on the new keywords described below, see “IDL Routine
Enhancements” on page 111.

Move Events

Top-level widget bases return the following event structure when the base is moved
and the base was created with the new TLB_MOVE_EVENTS keyword set:

{ WIDGET_TLB_MOVE, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing the base generating the event. HANDLER contains the
widget ID of the widget associated with the handler routine. X and Y are the new
location of the top left corner of the base.

Note
Move events are generated only when the mouse button is released.
What’s New in IDL 5.6 User Interface Toolkit Enhancements

48 Chapter 1: Overview of New Features in IDL 5.6
Note
If both TLB_SIZE_EVENTS and TLB_MOVE_EVENTS are enabled, a user resize
operation that causes the top left corner of the base to move will generate both a
move event and a resize event.

The new TLB_MOVE_ EVENTS keyword to WIDGET_CONTROL allows you to
change this setting after the base widget has been created.

The new TLB_MOVE_EVENTS keyword to WIDGET_INFO allows you to
determine the current setting.

Iconify Events

Top-level widget bases return the following event structure when the base is iconified
or restored and the base was created with the TLB_ICONIFY_EVENTS keyword
set:

{ WIDGET_TLB_ICONIFY, ID:0L, TOP:0L, HANDLER:0L, ICONIFIED:0 }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. ICONIFIED is 1 (one) if the user iconified the
base and 0 (zero) if the user restored the base.

The TLB_ICONIFY_ EVENTS keyword to WIDGET_CONTROL allows you to
change this setting after the base widget has been created.

The TLB_ICONIFY_EVENTS keyword to WIDGET_INFO allows you to determine
the current setting.

Resize Events

In previous releases, you could use the TLB_SIZE_EVENTS keyword to
WIDGET_BASE to configure the base widget to generate events when the user
resized the widget. IDL 5.6 adds the TLB_SIZE_ EVENTS keyword to
WIDGET_CONTROL to allow you to change this setting after the base widget has
been created.

The TLB_SIZE_EVENTS keyword to WIDGET_INFO allows you to determine the
current setting.
User Interface Toolkit Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 49
Color Bitmap Buttons from Array Data

In previous versions of IDL, the data for a bitmap to be placed on a button widget
could be specified either by setting the VALUE keyword to WIDGET_BUTTON
equal to the name of an image file (and specifying the BITMAP keyword) or by
setting the VALUE keyword equal to an n x m array of black-and-white bitmap
values. In addition to these two methods, you can now set the VALUE keyword equal
to an n x m x 3 byte array, which displays as a 24-bit color bitmap image.

You can produce appropriate color bitmap arrays in IDL in the following ways:

• Create a 24-bit color image using an external bitmap editor, and read it into an
IDL byte array using the appropriate procedure (READ_BMP, READ_JPEG,
etc.). The image array must be interleaved by plane (n x m x 3), with the planes
in the order of red, green, and blue.

Note
Image files created by image editors are often interleaved by pixel rather than
by plane. You can use the TRANSPOSE function to reformat the array.

button_image = READ_BMP('bitmap_file.bmp', /RGB)
button_image = TRANSPOSE(button_image, [1,2,0])
...
button = WIDGET_BUTTON(base, VALUE = button_image)

• Create an n x m x 3 byte array using the BYTARR function and modify the
array elements using array operations.

Although IDL places no restriction on the size of bitmap allowed, other operating
system windowing toolkits IDL interfaces with may prefer certain sizes.

Push and Toggle Buttons

In previous releases, setting the EXCLUSIVE or NONEXCLUSIVE keyword to
WIDGET_BASE did not produce the correct visual behavior when the base
contained bitmap buttons. In IDL 5.6, bitmap buttons on EXCLUSIVE and
NONEXCLUSIVE bases appear selected or unselected in the same manner as
buttons with text labels.

In addition, the TOOLBAR keyword to WIDGET_BASE has been added. Setting
this keyword does not cause any changes in behavior. Its only affect is to slightly alter
the appearance of the bitmap buttons on the base for cosmetic reasons.
What’s New in IDL 5.6 User Interface Toolkit Enhancements

50 Chapter 1: Overview of New Features in IDL 5.6
On Motif platforms, if bitmap buttons are on a base created with TOOLBAR and
either the EXCLUSIVE or NONEXCLUSIVE keywords set, the buttons will not
have a separate toggle indicator, they will be grouped closely together, and will have
a two-pixel shadow border.

Setting TOOLBAR has no effect on Windows platforms.

Checkmarks on Menu Buttons

Button widgets on menus can now have a checkmark placed next to the button label.
Use the CHECKED_MENU keyword to WIDGET_BUTTON to place a check mark
next to the button label when the button is created. Use the SET_BUTTON keyword
to WIDGET_CONTROL to change the state of the checkmark after creation. Use the
BUTTON_SET keyword to WIDGET_INFO to determine the current state of the
checkmark on a given button widget.

Note
To be considered a menu button, the button must have as its parent either a button
widget created with the MENU keyword or a base widget created with the
CONTEXT_MENU keyword.

Tooltips for Button and Draw Widgets

Button and draw widgets can now be configured to display a text tooltip when the
mouse cursor hovers over the button or drawable area for a few seconds. Use the
TOOLTIP keyword to WIDGET_BUTTON or WIDGET_DRAW to specify the text
when the widget is created. Use the TOOLTIP keyword to WIDGET_CONTROL to
change the text after the widget has been created. Use the TOOLTIP keyword to
WIDGET_INFO to retrieve the current text.

Figure 1-7: A Tooltip With a Button Widget
User Interface Toolkit Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 51
Keyboard Events for Draw Widgets

Draw widgets can now be configured to generate events when the draw widget has
the keyboard focus and a keyboard key is pressed. The event structure returned by the
WIDGET_EVENT function is now defined by the following statement:

{WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

The TYPE field of the WIDGET_DRAW event structure has been modified to report
the following additional values:

Keyboard events are generated with the value of the TYPE field equal to 5 or 6. If the
event was generated by an ASCII keyboard character, the TYPE field will be set to 5
and the ASCII value of the key will be returned in the CH field. ASCII values can be
converted to the string representing the character using the IDL STRING routine. If
the event was generated due to a non-ASCII keyboard character, the type of the event
will be set to 6 and a numeric value representing the key will be returned in the KEY
field. The table below lists the possible values of the KEY field.

Key values reported in the KEY field for the Shift, Control, Caps Lock, and Alt
keys are not the same as those reported in the MODIFIER field bit mask, since the
KEY field is not a bitmask.

Value Meaning

5 Key Press (ASCII character value reported in CH field)

6 Key Press (Non-ASCII key value reported in KEY field)

Table 1-10: Values to the TYPE Field for WIDGET_DRAW

Key Field Value Keyboard Key

1 Shift

2 Control

3 Caps Lock

4 Alt

5 Left

Table 1-11: Key Field Values for the KEY Field for WIDGET_DRAW
What’s New in IDL 5.6 User Interface Toolkit Enhancements

52 Chapter 1: Overview of New Features in IDL 5.6
Keyboard events are enabled using the KEYBOARD_EVENTS keyword to
WIDGET_DRAW or the DRAW_KEYBOARD_EVENTS keyword to
WIDGET_CONTROL. The DRAW_KEYBOARD_EVENTS keyword to
WIDGET_INFO allows you to determine the current setting.

Scrolling Draw Widget Enhancements

In prior releases of IDL, the use of the APP_SCROLL keyword to WIDGET_DRAW
caused the draw widget to be created with VIEWPORT_EVENTS = 1, RETAIN = 0,
and EXPOSE_EVENTS = 1 regardless of the settings of these three keywords. As a
result, if APP_SCROLL was set, you had to explicitly refresh the display when an
expose event occurred.

In IDL version 5.6, for draw widgets that use Direct Graphics for their drawable
areas, the settings for RETAIN and EXPOSE_EVENTS have been de-coupled from
the setting of APP_SCROLL. This allows you to create a scrolling draw widget that
can refresh an obscured part of the viewport from backing store. Since a refresh from
backing store redraws only the newly-exposed portion of the viewport, a performance
improvement may occur when backing store is used. (In prior releases, the viewport
had to be redrawn in its entirety when the event handler received an expose event.)

Note
Draw widgets that use Object Graphics for their drawable areas are not affected by
this change. If a draw widget uses Object Graphics and sets the APP_SCROLL
keyword, IDL continues to behave as if RETAIN=0 and EXPOSE_EVENTS=1.

6 Right

7 Up

8 Down

9 Page Up

10 Page Down

11 Home

12 End

Key Field Value Keyboard Key

Table 1-11: Key Field Values for the KEY Field for WIDGET_DRAW
User Interface Toolkit Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 53
If a draw widget is created with APP_SCROLL set and RETAIN is set to 1 or 2, no
expose events will be generated since the viewport will be refreshed from the backing
store. If RETAIN is not set, the standard IDL default of RETAIN = 1 applies.

If you have existing code that sets APP_SCROLL = 1, RETAIN = 0 but does not set
EXPOSE_EVENTS, the code will no longer refresh the viewport because the retain
setting is maintained but expose events will not be generated. Code with these
settings will need to be modified in one of the following ways:

• Remove the RETAIN = 0 setting. Which will cause IDL to use the default
setting of RETAIN = 1, which makes use of the system backing store.

• Change RETAIN = 0 to RETAIN = 1. Which will explicitly specify that the
system backing store be used.

• Change RETAIN = 0 to RETAIN = 2. Which will explicitly specify that IDL
provide backing store.

• Leave RETAIN = 0 and set EXPOSE_EVENTS = 1. Which will restore the
previous behavior, allowing you to explicitly handle expose events in an event-
handling routine.

Note
The use of APP_SCROLL = 1 still causes viewport events to be generated
regardless of the setting of the VIEWPORT_EVENTS keyword, since handling
viewport events is fundamental to the use of a scrolling draw widget.

Label Widget Enhancements

The SUNKEN_FRAME keyword to WIDGET_LABEL has been added to create a
three dimensional, bevelled border around the label widget. The resulting frame gives
the label a sunken appearance, similar to what is often seen in application status bars.

Figure 1-8: Sunken and Non-Sunken Labels
What’s New in IDL 5.6 User Interface Toolkit Enhancements

54 Chapter 1: Overview of New Features in IDL 5.6
Enhancements to WIDGET_INFO

In addition to the enhancements to the WIDGET_INFO routine described above, the
following new keywords have been added:

Keyword Description

FONTNAME Set this keyword to return a string containing the name of the
font being used by the specified widget. The returned name
can then be used when creating other widgets or with the
SET_FONT keyword to the DEVICE procedure.

MAP Set this keyword to return True (1) if the widget specified by
Widget_ID is mapped (visible), or False (0) otherwise. Note
that when a base widget is unmapped, all of its children are
unmapped. If WIDGET_INFO reports that a particular widget
is unmapped, it may be because a parent in the widget
hierarchy has been unmapped.

SENSITIVE Set this keyword to return True (1) if the widget specified by
Widget_ID is sensitive (enabled), or False (0) otherwise. Note
that when a base is made insensitive, all its children are made
insensitive. If WIDGET_INFO reports that a particular widget
is insensitive, it may be because a parent in the widget
hierarchy has been made insensitive.

VISIBLE Set this keyword to return True (1) if the widget specified by
Widget_ID is visible, or False (0) otherwise. A widget is
visible if:

• It has been realized.

• It and all of its ancestors are mapped.

Table 1-12: New WIDGET_INFO Keywords
User Interface Toolkit Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 55
New Personal Use Licensing

New with IDL 5.6, an IDL Personal Use License is associated with a designated user,
not with a specific hardware device, so licenses can be easily moved. With a Personal
Use License, RSI customers may use their IDL license in their office, lab, on a laptop
computer, and even at home. The Personal Use License option will allow a single,
named individual to install and license IDL on up to four (4) separate computer
systems that share a common operating system, as long as the license is only used on
a single computer at any one time. Available platforms include Windows, Linux and
Mac OS X. RSI will continue to offer Node-Locked and Network Floating licenses
for IDL.
What’s New in IDL 5.6 New Personal Use Licensing

56 Chapter 1: Overview of New Features in IDL 5.6
New Support for Macintosh OS X

IDL 5.6 now supports the OS X operating system for Macintosh platforms. Important
information about this release:

• Mac OS X is based on a UNIX operating system named Darwin. IDL 5.6 has
been released upon Darwin. All standard UNIX features are available on the
Macintosh OS X version of IDL, including multi-processor support with the
IDL Thread Pool.

• IDL 5.6 for OS X does not run in any emulation mode. It is a fully native
version of IDL. All GUI and graphical output are produced as X11 graphics.

• IDL 5.6 for OS X requires XFree86 version 4.2 (XDarwin 1.0.6.). This
package supplements the Macintosh Quartz/Aqua window system with the
ability to display X window graphics. This version has been included on your
IDL 5.6 product CD.

• IDL 5.6 for OS X will look similar to the UNIX Motif interface. With the
addition of the OroborOSX window manager, included on your IDL 5.6
product CD, you can enhance the Xwindow dressings to have the look and feel
of the standard Aqua interface.

• Although the interface does not have the Aqua look and feel, the X11 interface
does provide some unique advantages:

• Mac OS X IDL is installed and administered identically to any other UNIX
installation. It can be part of a multi-platform installation of IDL, and it
can be located on a remote server.

• As an X11 program, IDL can display its graphics on any remote X11
display on a network, including non-Apple systems.

• IDL for Mac OS X supports Altivec to the same level as previous
Macintosh IDL versions.

• IDL for Mac OS X supports node-locked, floating, and the new Personal Use
style of licensing.
New Support for Macintosh OS X What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 57
Documentation Enhancements

In addition to documentation for new and enhanced IDL features, the following
enhancements to the IDL documentation set are included in the 5.6 release:

• New Image Processing in IDL Manual

• Revised and Enhanced External Development Guide

• Revised Graphical User Interface Documentation

• Version History in Reference Documentation

• New Online Help Systems

New Image Processing in IDL Manual

The new Image Processing in IDL manual introduces you to the full image
processing power of IDL, describing how to display, manipulate, and extract
information from images. Topics include:

• Working with color

• Texture mapping and Warping

• Applying transforms

• Applying filters

• Using morphological operators

This manual features both Direct Graphics and Object Graphics examples that will
aid in developing IDL applications that require image processing.

Revised Graphical User Interface Documentation

“Part V: Creating Graphical User Interfaces in IDL” in the Building IDL Applications
manual has been revised. Chapter 23, “Using the IDL GUIBuilder” has been updated
with the changes made in this release and the “Widgets” chapter has been revised,
rewritten, and broken into three chapters:

• Chapter 24, “Widgets”

• Chapter 25, “Creating Widget Applications”

• Chapter 26, “Widget Application Techniques”
What’s New in IDL 5.6 Documentation Enhancements

58 Chapter 1: Overview of New Features in IDL 5.6
Revised and Enhanced External Development Guide

The External Development Guide has been extensively updated to include features
introduced in recent releases. Of particular note are the following chapters:

• Chapter 3, “Overview: COM and ActiveX in IDL”

• Chapter 4, “Using COM Objects in IDL”

• Chapter 5, “Using ActiveX Controls in IDL”

• Chapter 8, “CALL_EXTERNAL” (with emphasis on the AUTO_GLUE
mechanism)

Version History in Reference Documentation

Documentation for routines and objects in the IDL Reference Guide, the Scientific
Data Formats manual, and the IDL DataMiner Guide, and the Online Help now
include a section describing when the routine was first included in IDL.

New Online Help Systems

Windows versions of IDL now use the Microsoft HTML Help viewer (based on
Internet Explorer) to display help in Windows HTML Help format. In addition, the
entire IDL documentation set is available in PDF format.

UNIX versions of IDL now use the Adobe Acrobat Reader software to display a set
of hyperlinked Adobe Portable Document Format (PDF) files.

IDL no longer uses the Bristol HyperHelp viewer to provide online help for UNIX
platforms. Instead, it now uses the free Adobe Acrobat Reader. Acrobat Reader
version 3 or higher must be installed on your system, and the corresponding acroread
command must be available from your Unix PATH environment variable. Acrobat
reader is available from www.adobe.com as well as you IDL product CD-ROM.
Acrobat Reader has many advantages:

• Output is publication quality, and printing is well supported.

• No cross platform issues: PDF is the same no matter where it is viewed.

• Tables and Figures look exactly as they appear in the published manuals.

• Supports hypertext style links, just as with HyperHelp, both within the current
document and between documents.

• PDF files (the Acrobat format) are generated automatically from our books
without the need for manual proofreading.
Documentation Enhancements What’s New in IDL 5.6

http://www.adobe.com

Chapter 1: Overview of New Features in IDL 5.6 59
• The Acrobat Reader is freely available, and the use of the PDF format is
widespread.

• In comparison to HyperHelp, Acrobat is an industry standard, and tools for
producing PDF are available.

Significant time and effort were dedicated to identifying the best replacement for
Bristol HyperHelp. While providing HTML online help using standard Web browsers
was considered, the requirements of publication quality documentation led to the
conclusion that the use of PDF is a superior fit for the IDL online help system.
Benefits include more consistent formatting of tables and figures, quality printed
output, and the lack of browser incompatibility issues.

Mechanisms for using the new help systems from within user-written applications are
discussed in Chapter 20, “Providing Online Help For Your Application” in the
Building IDL Applications manual.

Changes to ONLINE_HELP and the “?” Command

The ONLINE_HELP procedure and ? command have been modified in the following
ways:

• On UNIX platforms, IDL uses the Adobe Acrobat Reader to display IDL’s
online help files.

• On Windows platforms, IDL uses Microsoft HTML Help to display IDL’s
online help files.

• On UNIX platforms, ONLINE_HELP can open an appropriate viewer and
display files in Adobe Portable Document Format (PDF), or HTML format.

• On Windows platforms, ONLINE_HELP can open an appropriate viewer and
display files in HTML Help, WinHelp, Adobe Portable Document Format
(PDF), or HTML format.

Note
If you have created custom Help files using Bristol HyperHelp, you will no longer
be able to access them using the ONLINE_HELP procedure.

For more information, see “ONLINE_HELP” in the IDL Reference Guide manual.
What’s New in IDL 5.6 Documentation Enhancements

60 Chapter 1: Overview of New Features in IDL 5.6
New and Enhanced IDL Objects

This section describes the following:

• New IDL Object Classes

• New IDL Object Methods

• IDL Object Method Enhancements

New IDL Object Classes

The following table describes the new object classes in IDL 5.5 for Windows.

New IDL Object Methods

New and existing IDL Object Graphics classes have been updated to include the
following new methods:

New Object Class Description

IDLffXMLSAX An IDLffXMLSAX object uses an XML SAX
level 2 parser. The XML parser allows you to
read an XML file and store arbitrary data from
the file in IDL variables. The parser object’s
methods are callbacks. These methods are
called automatically when the parser
encounters different types of XML elements
or attributes.

New Method Description

IDLgrContour::GetLabelInfo The IDLgrContour::GetLabelInfo procedure
method retrieves information about the labels
for the contour. The returned information is
only valid until the next time the
C_LABEL_INTERVAL or
C_LABEL_OBJECTS property is modified
via the IDLgrContour::SetProperty method, or
the offsets are adjusted via
IDLgrContour::AdjustLabelOffsets.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 61
IDL Object Method Enhancements

The following table describes new and updated keywords and arguments to IDL
object methods.

IDLanROI::ComputeMask

IDLanROIGroup::ComputeMask

IDLffShape::GetProperty

Item Description

RUN_LENGTH Set this keyword to a non-zero value to return
a run-length encoded representation of the
mask, stored in a one-dimensional unsigned
long array. When run-length encoded, each
element with an even subscript contains the
length of the run, and the following element
contains the starting index of the run.

Item Description

RUN_LENGTH Set this keyword to a non-zero value to return
a run-length encoded representation of the
mask, stored in a one-dimensional unsigned
long array. When run-length encoded, each
element with an even subscript contains the
length of the run, and the following element
contains the starting index of the run.

Item Description

N_RECORDS Return the number of records in the dBASE
table (.dbf) component of the shapefile. In a
normal operating mode, this is accomplished
by getting the number of entities. However, in
DBF_ONLY mode, no entity file exits.
What’s New in IDL 5.6 New and Enhanced IDL Objects

62 Chapter 1: Overview of New Features in IDL 5.6
IDLffShape::Init

IDLffShape::Open

Item Description

DBF_ONLY If this keyword is set to a positive value, only
the underlying dBASE table (.dbf)
component of the shapefile is opened. All
entity related files are left closed. Two values
to this keyword are accepted: 1 - Open an
existing .dbf file, > 1 - Create a new .dbf file

The UPDATE keyword is required to open the
.dbf file for updating.

Item Description

DBF_ONLY If this keyword is set to a positive value, only
the underlying dBASE table (.dbf)
component of the shapefile is opened. All
entity related files are left closed. Two values
to this keyword are accepted: 1 - Open an
existing .dbf file, > 1 - Create a new .dbf file

The UPDATE keyword is required to open the
.dbf file for updating.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 63
IDLgrAxis::Init

IDLgrBuffer::GetDeviceInfo

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword is a scalar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.

Item Description

MAX_NUM_CLIP_PLANES Set this keyword to a named variable that
upon return will contain an integer that
specifies the maximum number of user-
defined clipping planes supported by the
device.
What’s New in IDL 5.6 New and Enhanced IDL Objects

64 Chapter 1: Overview of New Features in IDL 5.6
IDLgrBuffer::PickData

IDLgrClipboard::GetDeviceInfo

IDLgrContour::Init

Item Description

PICK_STATUS Set this keyword to a named variable that will
contain “hit” information for each pixel in the
pick box. If the DIMENSIONS keyword is not
set, the PICK_STATUS will be a scalar value
exactly matching the Result of the method
call. If the DIMENSIONS keyword is set, the
PICK_STATUS variable will be an array
matching the dimensions of the pick box.
Each value in the PICK_STATUS array
corresponds to a pixel in the pick box, and will
be set to one of the following values:

-1: if the pixel falls outside of the window’s
viewport.

0: if no graphic object is “hit” at that pixel
location.

1: if a graphic object is “hit” at that pixel
location.

Item Description

MAX_NUM_CLIP_PLANES Set this keyword to a named variable that
upon return will contain an integer that
specifies the maximum number of user-
defined clipping planes supported by the
device.

Item Description

AM_PM Set this keyword to a vector of 2 strings indicating the
names of the AM and PM strings when processing
explicitly formatted dates (CAPA, CApA, and CapA
format codes) with the LABEL_FORMAT keyword.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 65
C_LABEL_INTERVAL Set this keyword to a vector of values indicating the
distance (measured parametrically relative to the
length of each contour path) between labels for each
contour level. If the number of contour levels exceeds
the number of provided intervals, the
C_LABEL_INTERVAL values will be repeated
cyclically. The default is 0.4.

C_LABEL_OBJECTS Set this keyword to an array of object references to
provide examples of labels to be drawn for each
contour level. The objects specified via this keyword
must inherit from one of the following classes:

• IDLgrSymbol

• IDLgrText

If a single object is provided, and it is an IDLgrText
object, each of its strings will correspond to a contour
level. If a vector of objects is used, any IDLgrText
objects should have only a single string; each object
will correspond to a contour level.

By default, with C_LABEL_OBJECTS set equal to a
null object, IDL computes text labels that are the string
representations of the corresponding contour level
values. Note that the objects specified via this keyword
are used as descriptors only. The actual objects drawn
as labels are generated by IDL, and may be accessed
via the IDLgrContour::GetLabelInfo method. The
contour labels will have the same color as the
corresponding contour level (see C_COLOR) unless
the C_USE_LABEL_COLOR keyword is specified.
The orientation of the label will be automatically
computed unless the
C_USE_LABEL_ORIENTATION keyword is
specified. The horizontal and vertical alignment of any
text labels will default to 0.5 (i.e., centered) unless the
USE_TEXT_ALIGNMENTS keyword is specified.

Note - The object(s) set via this keyword will not be
destroyed automatically when the contour is
destroyed.

Item Description
What’s New in IDL 5.6 New and Enhanced IDL Objects

66 Chapter 1: Overview of New Features in IDL 5.6
C_LABEL_NOGAPS Set this keyword to a vector of values indicating
whether gaps should be computed for the labels at the
corresponding contour value. A zero value indicates
that gaps will be computed for labels at that contour
value; a non-zero value indicates that no gaps will be
computed for labels at that contour value. If the
number of contour levels exceeds the number of
elements in this vector, the C_LABEL_NOGAPS
values will be repeated cyclically. By default, gaps for
the labels are computed for all levels (so that a contour
line does not pass through the label).

C_LABEL_SHOW Set this keyword to a vector of integers. For each
contour value, if the corresponding value in the
C_LABEL_SHOW vector is non-zero, the contour
line for that contour value will be labeled. If the
number of contour levels exceeds the number of
elements in this vector, the C_LABEL_SHOW values
will be repeated cyclically. The default is 0 indicating
that no contour levels will be labeled.

C_USE_LABEL_
COLOR

Set this keyword to a vector of values to indicate
whether the COLOR property value for each of the
label objects (for the corresponding contour level) is to
be used to draw that label. If the number of contour
levels exceeds the number of elements in this vector,
the C_USE_LABEL_COLOR values will be repeated
cyclically. By default, this value is zero, indicating that
the COLOR properties of the label objects will be
ignored, and the C_COLOR property for the contour
object will be used instead.

Item Description
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 67
C_USE_LABEL_
ORIENTATION

Set this keyword to a vector of values to indicate
whether the orientation for each of the label objects
(for the corresponding contour level) is to be used
when drawing the label. For text, the orientation of the
object corresponds to the BASELINE and UPDIR
property values; for a symbol, this refers to the default
(un-rotated) orientation of the symbol. If the number
of contour levels exceeds the number of elements in
this vector, the C_USE_LABEL_ORIENTATION
values will be repeated cyclically. By default, this
value is zero, indicating that orientation of the label
object(s) will be set to automatically computed values
(to correspond to the direction of the contour paths).

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of this keyword is a scalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any x, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDeviceInfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.

Item Description
What’s New in IDL 5.6 New and Enhanced IDL Objects

68 Chapter 1: Overview of New Features in IDL 5.6
DAYS_OF_WEEK Set this keyword to a vector of 7 strings indicate the
names to be used for the days of the week when
processing explicitly formatted dates (CDWA, CDwA,
and CdwA format codes) with the LABEL_FORMAT
keyword.

LABEL_FONT Set this keyword to an instance of an IDLgrFont object
to describe the default font to be used for contour
labels. This font will be used for all text labels
automatically generated by IDL (i.e., if
C_LABEL_SHOW is set but the corresponding
C_LABEL_OBJECTS text object is not provided), or
for any text label objects provided via
C_LABEL_OBJECTS that do not already have the
font property set. The default value for this keyword is
a NULL object reference, indicating that 12 pt.
Helvetica will be used.

LABEL_FORMAT Set this keyword to a string that represents a format
string or the name of a function to be used to format
the contour labels. If the string begins with an open
parenthesis, it is treated as a standard format string.
(Refer to the Format Codes in the IDL Reference
Guide.) If the string does not begin with an open
parenthesis, it is interpreted as the name of a callback
function to be used to generate contour level labels.

The callback function is called with three parameters:
Axis, Index, and Value, where:

Axis is simply the value 2 to indicate that values along
the Z axis are being formatted. (This allows a single
callback routine to be used for both axis labeling and
contour labeling.)

Index is the contour level index (indices start at 0).

Value is the data value of the current contour level.

Item Description
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 69
LABEL_FRMTDATA Set this keyword to a value of any type. It will be
passed via the DATA keyword to the user-supplied
formatting function specified via the
LABEL_FORMAT keyword, if any. By default, this
value is 0, indicating that the DATA keyword will not
be set (and furthermore, need not be supported by the
user-supplied function).

Note - LABEL_FRMTDATA will not be included in
the structure returned via the ALL keyword to the
IDLgrContour::GetProperty method.

LABEL_UNITS Set this keyword to a string indicating the units to be
used for default contour level labeling.

Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the contour
levels correspond to time values; IDL will
determine the appropriate label format based upon
the range of values covered by the contour Z data.

• "" - The empty string is equivalent to the
"Numeric" unit. This is the default.

If any of the time units are utilized, then the contour
values are interpreted as Julian date/time values.

Note - The singular form of each of the time unit
strings is also acceptable (for example,
LEVEL_UNITS='Day' is equivalent to
LEVEL_UNITS='Days').

Item Description
What’s New in IDL 5.6 New and Enhanced IDL Objects

70 Chapter 1: Overview of New Features in IDL 5.6
MONTHS Set this keyword to a vector of 12 strings indicating the
names to be used for the months when processing
explicitly formatted dates (CMOA, CMoA, and CmoA
format codes) with the C_LABEL_FORMAT
keyword.

USE_TEXT_
ALIGNMENTS

Set this keyword to indicate that, for any IDLgrText
labels (as specified via the C_LABEL_OBJECTS
keyword), the ALIGNMENT and
VERTICAL_ALIGNMENT property values for the
given IDLgrText object(s) are to be used to draw the
corresponding labels. By default, this value is zero,
indicating that the ALIGNMENT and
VERTICAL_ALIGNMENT properties of the label
IDLgrText object(s) will be set to default values (0.5
for each, indicating centered labels).

Item Description
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 71
IDLgrImage::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of this keyword is a scalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any x, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDeviceInfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.
What’s New in IDL 5.6 New and Enhanced IDL Objects

72 Chapter 1: Overview of New Features in IDL 5.6
IDLgrModel::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of this keyword is a scalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
the objects this model contains (prior to the application
of this model's transform).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDeviceInfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 73
IDLgrPlot::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of this keyword is a scalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any x, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDeviceInfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.
What’s New in IDL 5.6 New and Enhanced IDL Objects

74 Chapter 1: Overview of New Features in IDL 5.6
IDLgrPolygon::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of this keyword is a scalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any x, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDeviceInfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 75
IDLgrPolyline::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes
to be applied to this object. The four coefficients
for each clipping plane are of the form
[A,B,C,D], where Ax+By+Cz+D = 0. Portions
of this object that fall in the half space
Ax+By+Cz+D > 0 will be clipped. By default,
the value of this keyword is a scalar (-1)
indicating that no clipping planes are to be
applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near and
far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDeviceInfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and
IDLgrVRML objects.

LABEL_NOGAPS Set this keyword to a vector of values indicating
whether gaps should be computed for the
corresponding label. A zero value indicates that
a gap will be computed for the labels; a non-zero
value indicates that no gap will be computed for
the label. If the number of labels exceeds the
number of elements in this vector, the
LABEL_NOGAPS values will be repeated
cyclically. By default, gaps are computed for all
labels (so that the polyline does not pass through
the label).
What’s New in IDL 5.6 New and Enhanced IDL Objects

76 Chapter 1: Overview of New Features in IDL 5.6
LABEL_OFFSETS Set this keyword to a scalar or vector of floating
point offsets, [t0, t1, …], that indicate the
parametric offsets along the length of each
polyline (specified via the
LABEL_POLYLINES keyword) at which each
label (as specified via the LABEL_OBJECTS
keyword) would be positioned. If
LABEL_OFFSETS is set to a scalar less than
zero, then the offsets will be automatically
computed to be evenly distributed along the
length of the polyline. If a scalar value greater
than or equal to zero is provided, it is used for all
labels. If a vector is provided, the number of
offsets must match the number of labels
provided via LABEL_OBJECTS. By default,
this keyword is set to the scalar, -1, indicating
that the label offsets will be automatically
computed.

Item Description
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 77
LABEL_OBJECTS Set this keyword to an object reference (or vector
of object references) to specify the labels to be
drawn along the polyline path(s). The objects
specified via this keyword must inherit from one
of the following classes:

• IDLgrSymbol

• IDLgrText

If a single object is provided, and it is an
IDLgrText object, each of its strings will
correspond to a label. If a vector of objects is
used, any IDLgrText objects should have only a
single string; each object will correspond to a
label.

If one or more IDLgrText objects are provided,
the LOCATION property of the provided text
object(s) may be overwritten; position is
determined according to the values provided via
the LABEL_OFFSETS keyword. The labels will
have the same color as the corresponding
polyline (see the COLOR keyword) unless the
USE_LABEL_COLOR keyword is specified.
The orientation of the label objects
USE_LABEL_ORIENTATION keyword is
specified. The horizontal and vertical alignment
for any text labels will each default to 0.5 (i.e.,
centered) unless the
USE_TEXT_ALIGNMENTS keyword is
specified.

Note - The objects provided via this keyword
will not be destroyed automatically when this
IDLgrPolyline is destroyed.

Item Description
What’s New in IDL 5.6 New and Enhanced IDL Objects

78 Chapter 1: Overview of New Features in IDL 5.6
LABEL_POLYLINES Set this keyword to a scalar or a vector of
polyline indices, [P0, P1, …], that indicate
which polylines are to be labeled. Pi corresponds
to the ith polyline specified via the POLYLINES
keyword. This keyword is intended to be used in
conjunction with the LABEL_OBJECTS
keyword. If a scalar is provided, all labels will be
drawn along the single indicated polyline. If a
vector is provided, the number of polyline
indices must match the number of labels
provided via LABEL_OBJECTS.

By default, this keyword is set to the scalar, 0,
indicating that only the first polyline will be
labeled.

Note - If a given polyline has more than one
label, then the corresponding polyline index may
appear more than once in the
LABEL_POLYLINES vector.

LABEL_USE_VERTEX_
COLOR

Set this keyword to a non-zero value to indicate
that labels should be colored according to the
vertex coloring (if the VERT_COLORS keyword
is set). By default, this value is zero, indicating
that the label will be drawn using the color
specified via the COLOR property of the
polyline object (unless the
USE_LABEL_COLOR keyword is set).

USE_LABEL_COLOR Set this keyword to a vector of values to indicate
whether the COLOR property value for the
corresponding label object is to be used to draw
that label. If the number of labels exceeds the
number of elements in this vector, the
USE_LABEL_COLOR values will be repeated
cyclically. By default, this value is zero,
indicating that the COLOR property of each
label object will be ignored, and the COLOR
property for the polyline object will be used
instead.

Item Description
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 79
USE_LABEL_ORIENTATION Set this keyword to a vector of values to indicate
whether the orientation of the corresponding
label object is to be used to draw that label. For
IDLgrText objects, this refers to the BASELINE
and UPDIR property values. For IDLgrSymbol
objects, this refers to the default (un-rotated)
orientation of the symbol. If the number of labels
exceeds the number of elements in this vector,
the USE_LABEL_ORIENTATION values will
be repeated cyclically. By default,
USE_LABEL_ORIENTATION is zero,
indicating that the orientation will be
automatically computed so that the baseline is
parallel to the polyline, and the updir is
perpendicular to the polyline.

USE_TEXT_ALIGNMENTS Set this keyword to indicate that, for any
IDLgrText labels (as specified via the
LABEL_OBJECTS keyword), the
ALIGNMENT and VERTICAL_ALIGNMENT
property values for the given IDLgrText
object(s) are to be used to draw those labels. By
default, this value is zero, indicating that the
ALIGNMENT and VERTICAL_ALIGNMENT
properties of the IDLgrText object(s) will be
overwritten with default values (0.5 for each,
indicating centered labels).

Item Description
What’s New in IDL 5.6 New and Enhanced IDL Objects

80 Chapter 1: Overview of New Features in IDL 5.6
IDLgrROI::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword is a scalar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 81
IDLgrROIGroup::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword is a scalar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.
What’s New in IDL 5.6 New and Enhanced IDL Objects

82 Chapter 1: Overview of New Features in IDL 5.6
IDLgrSurface::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the clipping
planes to be applied to this object. The four
coefficients for each clipping plane are of the
form [A,B,C,D], where Ax+By+Cz+D = 0.
Portions of this object that fall in the half space
Ax+By+Cz+D > 0 will be clipped. By default,
the value of this keyword is a scalar (-1)
indicating that no clipping planes are to be
applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near and
far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow,
and IDLgrVRML objects.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 83
IDLgrSymbol::Init

Item Description

Data This argument can contain either an integer
value from the list shown below, or an object
reference to either an IDLgrModel object or
atomic graphic object.

Use one of the following scalar-represented
internal default symbols:

• 0 = No symbol

• 1 = Plus sign, ‘+’ (default)

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X

• 8 = Arrow Head

If an instance of the IDLgrModel object class
or an atomic graphic object is used, the object
tree is used as the symbol.
What’s New in IDL 5.6 New and Enhanced IDL Objects

84 Chapter 1: Overview of New Features in IDL 5.6
IDLgrTessellator::AddPolygon

IDLgrTessellator::Tessellate

Item Description

AUXDATA Set this keyword to an array of auxiliary per-
vertex data. This array must have dimensions
[m,n] where m is the number of auxiliary data
items per vertex and n is the number of
vertices specified in the X, Y, and Z
arguments. If you specify AUXDATA in any
invocation of the AddPolygon method, you
must specify it on all invocations of the
method for the polygons to be tessellated
together with the Tessellate method. Further,
the value of m in the dimensions must be the
same for all polygons. That is, all polygons
must have the same number of auxiliary data
items for each vertex.

Item Description

AUXDATA Set this keyword to a named variable that
receives the auxiliary data associated with
each vertex returned in the Vertices argument.
The data is an [m, n] array where m is the
number of per-vertex auxiliary data items
specified in the call(s) to the AddPolygon
method, and n is the number of vertices
returned in the Vertices argument. The type of
the returned auxiliary data is the same as the
type of the data supplied with the AUXDATA
keyword in the last call to AddPolygon.
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 85
IDLgrText::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword is a scalar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.
What’s New in IDL 5.6 New and Enhanced IDL Objects

86 Chapter 1: Overview of New Features in IDL 5.6
IDLgrVolume::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword is a scalar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.

Note - Clipping planes are equivalent to
cutting planes (refer to the
CUTTING_PLANES keyword). The
CUTTING_PLANES will be applied first,
then the CLIP_PLANES (until a maximum
number of planes is reached).
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 87
IDLgrVRML::GetDeviceInfo

IDLgrWindow::GetDeviceInfo

IDLgrWindow::PickData

Item Description

MAX_NUM_CLIP_PLANES Set this keyword to a named variable that upon
return will contain an integer that specifies the
maximum number of user-defined clipping
planes supported by the device.

Item Description

MAX_NUM_CLIP_PLANES Set this keyword to a named variable that upon
return will contain an integer that specifies the
maximum number of user-defined clipping
planes supported by the device.

Item Description

PICK_STATUS Set this keyword to a named variable that will
contain “hit” information for each pixel in the
pick box. If the DIMENSIONS keyword is not
set, the PICK_STATUS will be a scalar value
exactly matching the Result of the method
call. If the DIMENSIONS keyword is set, the
PICK_STATUS variable will be an array
matching the dimensions of the pick box.
Each value in the PICK_STATUS array
corresponds to a pixel in the pick box, and will
be set to one of the following values:

-1: if the pixel falls outside of the window’s
viewport.

0: if no graphic object is “hit” at that pixel
location.

1: if a graphic object is “hit” at that pixel
location.
What’s New in IDL 5.6 New and Enhanced IDL Objects

88 Chapter 1: Overview of New Features in IDL 5.6
IDLgrWindow::SetCurrentCursor

Item Description

CursorName A string that specifies which built-in cursor to
use. This argument is ignored if any keywords
to this routine are set. This string can either be
a name provided to the
REGISTER_CURSOR routine or one of the
following:

• ARROW

• CROSSHAIR

• ICON

• IBEAM

• MOVE

• ORIGINAL

• SIZE_NE

• SIZE_NW

• SIZE_SE

• SIZE_SW

• SIZE_NS

• SIZE_EW

• UP_ARROW
New and Enhanced IDL Objects What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 89
New and Enhanced IDL Routines

This section describes the following:

• New IDL Routines

• IDL Routine Enhancements

New IDL Routines

The following is a list of new functions and procedures added to IDL in this release:

New Routine Description

COPY_LUN The COPY_LUN procedure copies data
between two open files. It is useful in situations
where it is necessary to transfer a known
amount of data from one file to another without
the requirement of having the data available in
an IDL variable.

DIAG_MATRIX The DIAG_MATRIX procedure constructs a
diagonal matrix from an input vector, or if given
a matrix, then DIAG_MATRIX will extract a
diagonal vector.

FILE_COPY The FILE_COPY procedure copies files, or
directories of files, to a new location. The
copies retain the protection settings of the
original files, and belong to the user that
performed the copy.

FILE_LINES The FILE_LINES function returns the number
of lines of text contained within the specified
file or files. If an array of file names is specified
as the input parameter, the return value is an
array with the same number of elements as the
input array, with each element containing the
number of lines in the corresponding file.

Table 1-13: New Routines in IDL 5.6
What’s New in IDL 5.6 New and Enhanced IDL Routines

90 Chapter 1: Overview of New Features in IDL 5.6
FILE_LINK The FILE_LINK procedure creates UNIX file
links, both regular (hard) and symbolic.
FILE_LINK is available only under UNIX.

FILE_MOVE The FILE_MOVE procedure renames files and
directories. The moved files retain their
protection and ownership attributes.

FILE_READLINK The FILE_READLINK function returns the
path pointed to by UNIX symbolic links.

FILE_SAME The FILE_SAME function is used to determine
if two different file names refer to the same
underlying file. FILE_SAME returns True (1) if
they are, or False (0) otherwise. If either or both
of the input arguments are arrays of file names,
the result is an array, following the same rules
as standard IDL operators.

H5_BROWSER The H5_BROWSER function presents a
graphical user interface for viewing and reading
HDF5 files.

H5_CLOSE The H5_CLOSE procedure flushes all data to
disk, closes file identifiers, and cleans up
memory. This routine closes IDL’s link to its
HDF5 libraries. This procedure is used
automatically by IDL when RESET_SESSION
is issued, but it may also be called if the user
desires to free all HDF5 resources.

H5_GET_LIBVERSION The H5_GET_LIBVERSION function returns
the current version of the HDF5 library used by
IDL.

H5_OPEN The H5_OPEN procedure initializes IDL’s
HDF5 library. This procedure is issued
automatically by IDL when one of IDL’s HDF5
routines is used.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 91
H5_PARSE The H5_PARSE function recursively descends
through an HDF5 file or group and creates an
IDL structure containing object information and
data.

H5A_CLOSE The H5A_CLOSE procedure closes the
specified attribute and releases resources used
by it. After this routine is used, the attribute’s
identifier is no longer available until the
H5A_OPEN routines are used again to specify
that attribute. Further use of the attribute
identifier is illegal.

H5A_GET_NAME The H5A_GET_NAME function retrieves an
attribute name given the attribute identifier
number.

H5A_GET_NUM_ATTRS The H5A_GET_NUM_ATTRS function returns
the number of attributes attached to a group,
dataset, or a named datatype.

H5A_GET_SPACE The H5A_GET_SPACE function returns the
identifier number of a copy of the dataspace for
an attribute.

H5A_GET_TYPE The H5A_GET_TYPE function returns the
identifier number of a copy of the datatype for
an attribute.

H5A_OPEN_IDX The H5A_OPEN_IDX function opens an
existing attribute by the index of that attribute
within an HDF5.

H5A_OPEN_NAME The H5A_OPEN_NAME function opens an
existing attribute by the name of that attribute
within an HDF5 file.

H5A_READ The H5A_READ function reads the data within
an attribute, converting from the HDF5 file
datatype into the HDF5 memory datatype, and
finally into the corresponding IDL datatype.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

92 Chapter 1: Overview of New Features in IDL 5.6
H5D_CLOSE The H5D_CLOSE procedure closes the
specified dataset and releases its used resources.

H5D_GET_SPACE The H5D_GET_SPACE function returns an
identifier number for a copy of the dataspace for
a dataset.

H5D_GET_STORAGE_SIZE The H5D_GET_STORAGE_SIZE function
returns the amount of storage in bytes required
for a dataset. For chunked datasets this is the
number of allocated chunks times the chunk
size.

H5D_GET_TYPE The H5D_GET_TYPE function returns an
identifier number for a copy of the datatype for
a dataset.

H5D_OPEN The H5D_OPEN function opens an existing
dataset within an HDF5 file.

H5D_READ The H5D_READ function reads the data within
a dataset, converting from the HDF5 file
datatype into the HDF5 memory datatype, and
finally into the corresponding IDL datatype.

H5F_CLOSE The H5F_CLOSE procedure closes the
specified file and releases resources used by it.

H5F_IS_HDF5 The H5F_IS_HDF5 function determines if a file
is in the HDF5 format.

H5F_OPEN The H5F_OPEN function opens an existing
HDF5 file.

H5G_CLOSE The H5G_CLOSE procedure closes the
specified group and releases resources used by
it.

H5G_GET_COMMENT The H5G_GET_COMMENT function retrieves
a comment string from a specified object.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 93
H5G_GET_LINKVAL The H5G_GET_LINKVAL function returns the
name of the object pointed to by a symbolic
link.

H5G_GET_MEMBER_NAME The H5G_GET_MEMBER_NAME function
retrieves the name of an object within a group,
by its zero-based index.

H5G_GET_NMEMBERS The H5G_GET_NMEMBERS function returns
the number of objects within a group.

H5G_GET_OBJINFO The H5G_GET_OBJINFO function retrieves
information from a specified object.

H5G_OPEN The H5G_OPEN function opens an existing
group within an HDF5 file.

H5I_GET_TYPE The H5I_GET_TYPE function returns the
object’s type.

H5R_DEREFERENCE The H5R_DEREFERENCE function opens a
reference and returns the object identifier.

H5R_GET_OBJECT_TYPE The H5R_GET_OBJECT_TYPE function
returns the type of object that an object
reference points to.

H5S_CLOSE The H5S_CLOSE procedure releases and
terminates access to a dataspace. After this
routine is used, the dataspace’s identifier is no
longer available.

H5S_COPY The H5S_COPY function copies an existing
dataspace.

H5S_CREATE_SIMPLE The H5S_CREATE_SIMPLE function creates a
simple dataspace.

H5S_GET_SELECT_BOUNDS The H5S_GET_SELECT_BOUNDS function
retrieves the coordinates of the bounding box
containing the current dataspace selection.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

94 Chapter 1: Overview of New Features in IDL 5.6
H5S_GET_SELECT_ELEM_NPOINTS The H5S_GET_SELECT_ELEM_NPOINTS
function determines the number of element
points in the current dataspace selection.

H5S_GET_SELECT_ELEM_POINTLIST The H5S_SELECT_ELEM_POINTLIST
function returns a list of the element points in
the current dataspace selection.

H5S_GET_SELECT_HYPER_BLOCKLIST The H5S_GET_SELECT_HYPER_
BLOCKLIST function returns a list of the
hyperslab blocks in the current dataspace
selection.

H5S_GET_SELECT_HYPER_NBLOCKS The H5S_GET_SELECT_HYPER_NBLOCKS
function determines the number of hyperslab
blocks in the current dataspace selection.

H5S_GET_SELECT_NPOINTS The H5S_GET_SELECT_NPOINTS function
determines the number of elements in a
dataspace selection.

H5S_GET_SIMPLE_EXTENT_DIMS The H5S_GET_SIMPLE_EXTENT_DIMS
function returns the dimension sizes for a
dataspace.

H5S_GET_SIMPLE_EXTENT_NDIMS The H5S_GET_SIMPLE_EXTENT_NDIMS
function determines the number of dimensions
(or rank) of a dataspace.

H5S_GET_SIMPLE_EXTENT_NPOINTS The H5S_GET_SIMPLE_EXTENT_NPOINTS
function determines the number of elements in a
dataspace.

H5S_GET_SIMPLE_EXTENT_TYPE The H5S_GET_SIMPLE_EXTENT_TYPE
function returns the current class of a dataspace.

H5S_IS_SIMPLE The H5S_IS_SIMPLE function determines
whether a dataspace is a simple dataspace.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 95
H5S_OFFSET_SIMPLE The H5S_OFFSET_SIMPLE procedure sets the
selection offset for a simple dataspace. The
offset allows the same shaped selection to be
moved to different locations within the
dataspace.

H5S_SELECT_ALL The H5S_SELECT_ALL procedure selects the
entire extent of a dataspace.

H5S_SELECT_ELEMENTS The H5S_SELECT_ELEMENTS procedure
selects array elements to be included in the
selection for a dataspace.

H5S_SELECT_HYPERSLAB The H5S_SELECT_HYPERSLAB procedure
selects a hyperslab region to be included in the
selection for a dataspace.

H5S_SELECT_NONE The H5S_SELECT_NONE procedure resets the
dataspace selection region to include no
elements.

H5S_SELECT_VALID The H5S_SELECT_VALID function verifies
that the selection is within the extent of a
dataspace.

H5T_CLOSE The H5T_CLOSE procedure releases the
specified datatype’s identifier and releases
resources used by it.

H5T_COMMITTED The H5T_COMMITTED function determines
whether a datatype is a named datatype or a
transient type.

H5T_COPY The H5T_COPY function copies an existing
datatype. The returned type is transient and
unlocked.

H5T_EQUAL The H5T_EQUAL function determines whether
two datatype identifiers refer to the same
datatype.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

96 Chapter 1: Overview of New Features in IDL 5.6
H5T_GET_ARRAY_DIMS The H5T_GET_ARRAY_DIMS function
returns the dimension sizes for an array
datatype object.

H5T_GET_ARRAY_NDIMS The H5T_GET_ARRAY_NDIMS function
determines the number of dimensions (or rank)
of an array datatype object.

H5T_GET_CLASS The H5T_GET_CLASS function returns the
datatype’s class.

H5T_GET_CSET The H5T_GET_CSET function returns the
character set type of a string datatype.

H5T_GET_EBIAS The H5T_GET_EBIAS function returns the
exponent bias of a floating-point type.

H5T_GET_FIELDS The H5T_GET_FIELDS function retrieves
information about the positions and sizes of bit
fields within a floating-point datatype.

H5T_GET_INPAD The H5T_GET_INPAD function returns the
padding method for unused internal bits within
a floating-point datatype.

H5T_GET_MEMBER_CLASS The H5T_GET_MEMBER_CLASS function
returns the datatype class of a compound
datatype member.

H5T_GET_MEMBER_NAME The H5T_GET_MEMBER_NAME function
returns the datatype name of a compound
datatype member.

H5T_GET_MEMBER_OFFSET The H5T_GET_MEMBER_OFFSET function
returns the byte offset of a field within a
compound datatype.

H5T_GET_MEMBER_TYPE The H5T_GET_MEMBER_TYPE function
returns the datatype identifier for a specified
member within a compound datatype.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 97
H5T_GET_NMEMBERS The H5T_GET_NMEMBERS function returns
the number of fields in a compound datatype.

H5T_GET_NORM The H5T_GET_NORM function returns the
mantissa normalization of a floating-point
datatype.

H5T_GET_OFFSET The H5T_GET_OFFSET function returns the
bit offset of the first significant bit in an atomic
datatype. The offset is the number of bits of
padding that follows the significant bits (for big
endian) or precedes the significant bits (for little
endian).

H5T_GET_ORDER The H5T_GET_ORDER function returns the
byte order of an atomic datatype.

H5T_GET_PAD The H5T_GET_PAD function returns the
padding method of the least significant bit (lsb)
and most significant bit (msb) of an atomic
datatype.

H5T_GET_PRECISION The H5T_GET_PRECISION function returns
the precision in bits of an atomic datatype. The
precision is the number of significant bits
which, unless padded, is 8 times larger than the
byte size from H5T_GET_SIZE.

H5T_GET_SIGN The H5T_GET_SIGN function returns the sign
type for an integer datatype.

H5T_GET_SIZE The H5T_GET_SIZE function returns the size
of a datatype in bytes.

H5T_GET_STRPAD The H5T_GET_STRPAD function returns the
padding method for a string datatype.

H5T_GET_SUPER The H5T_GET_SUPER function returns the
base datatype from which a datatype is derived.

H5T_IDLTYPE The H5T_IDLTYPE function returns the IDL
type code corresponding to a datatype.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

98 Chapter 1: Overview of New Features in IDL 5.6
H5T_MEMTYPE The H5T_MEMTYPE function returns the
native memory datatype corresponding to a file
datatype.

H5T_OPEN The H5T_OPEN function opens a named
datatype.

LA_CHOLDC The LA_CHOLDC procedure computes the
Cholesky factorization of an n-by-n symmetric
(or Hermitian) positive-definite array as:

• If A is real: A = UT U or A = L LT

• If A is complex: A = UH U or A = L LH

where U and L are upper and lower triangular
arrays. The T represents the transpose while H
represents the Hermitian, or transpose complex
conjugate.

LA_CHOLMPROVE The LA_CHOLMPROVE function uses
Cholesky factorization to improve the solution
to a system of linear equations, AX = B (where
A is symmetric or Hermitian), and provides
optional error bounds and backward error
estimates. The result is an n-element vector
whose type is identical to A.

The LA_CHOLMPROVE function may also be
used to improve the solutions for multiple
systems of linear equations, with each column
of B representing a different set of equations. In
this case, the result is a k-by-n array where each
of the k columns represents the improved
solution vector for that set of equations.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 99
LA_CHOLSOL The LA_CHOLSOL function is used in
conjunction with the LA_CHOLDC procedure
to solve a set of n linear equations in n
unknowns, AX = B, where A must be a
symmetric (or Hermitian) positive-definite
array. The parameter A is input not as the
original array, but as its Cholesky
decomposition, created by the routine
LA_CHOLDC. The result is an n-element
vector whose type is identical to A.

The LA_CHOLSOL function may also be used
to solve for multiple systems of linear
equations, with each column of B representing a
different set of equations. In this case, the result
is a k-by-n array where each of the k columns
represents the solution vector for that set of
equations.

LA_DETERM The LA_DETERM function uses LU
decomposition to compute the determinant of a
square array. The result is a scalar of the same
type as the input array.

This routine is written in the IDL language. Its
source code can be found in the file
la_determ.pro in the lib subdirectory of the
IDL distribution.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

100 Chapter 1: Overview of New Features in IDL 5.6
LA_EIGENPROBLEM The LA_EIGENPROBLEM function uses the
QR algorithm to compute all eigenvalues λ and
eigenvectors v ≠ 0 of an n-by-n real
nonsymmetric or complex non-Hermitian array
A, for the eigenproblem Av = λv. The routine
can also compute the left eigenvectors u ≠ 0,
which satisfy uHA = λuH.

LA_EIGENPROBLEM may also be used for
the generalized eigenproblem:

• Av = λBv and uHA = λuHB

where A and B are square arrays, v are the right
eigenvectors, and u are the left eigenvectors.

The result is a complex n-element vector
containing the eigenvalues.

LA_EIGENQL The LA_EIGENQL function computes selected
eigenvalues λ and eigenvectors z ≠ 0 of an n-by-
n real symmetric or complex Hermitian array A,
for the eigenproblem Az = λz.

LA_EIGENQL may also be used for the
generalized symmetric eigenproblems:

• Az = λBz or ABz = λz or BAz = λz

where A and B are symmetric (or Hermitian)
and B is positive definite.

In both cases, the result is a real vector
containing the eigenvalues in ascending order.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 101
LA_EIGENVEC The LA_EIGENVEC function uses the QR
algorithm to compute all or some of the
eigenvectors v ≠ 0 of an n-by-n real
nonsymmetric or complex non-Hermitian array
A, for the eigenproblem Av = λv. The routine
can also compute the left eigenvectors u ≠ 0,
which satisfy uHA = λuH.

The result is a complex array containing the
eigenvectors as a set of row vectors.

LA_ELMHES The LA_ELMHES function reduces a real
nonsymmetric or complex non-Hermitian array
to upper Hessenberg form H. If the array is real
then the decomposition is A = Q H QT, where Q
is orthogonal. If the array is complex Hermitian
then the decomposition is A = Q H QH, where Q
is unitary. The T represents the transpose while
superscript H represents the Hermitian, or
transpose complex conjugate.

The result is an array of the same type as A
containing the upper Hessenberg form.

LA_GM_LINEAR_MODEL The LA_GM_LINEAR_MODEL function is
used to solve a general Gauss-Markov linear
model problem:

• minimizex ||y||2 with constraint d = Ax + By

where A is an m-column by n-row array, B is a
p-column by n-row array, and d is an n-element
input vector with m ≤ n ≤ m+p. The result, x, is
an m-element vector whose type is identical to
A.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

102 Chapter 1: Overview of New Features in IDL 5.6
LA_HQR The LA_HQR function uses the multishift QR
algorithm to compute all eigenvalues of an n-
by-n upper Hessenberg array. The
LA_ELMHES routine can be used to reduce a
real or complex array to upper Hessenberg form
suitable for input to this procedure. LA_HQR
may also be used to compute the matrices T and
QZ from the Schur decomposition A = (QZ) T
(QZ)H.

The result is an n-element complex vector.

LA_INVERT The LA_INVERT function uses LU
decomposition to compute the inverse of a
square array. The result is an array of the same
dimensions as the input array.

LA_LEAST_SQUARE_EQUALITY The LA_LEAST_SQUARE_EQUALITY
function is used to solve the linear least-squares
problem:

Minimizex ||Ax - c||2 with constraint Bx = d

where A is an n-column by m-row array, B is an
n-column by p-row array, c is an m-element
input vector, and d is a p-element input vector
with p ≤ n ≤ m+p. The result, x, is an n-element
vector. If B has full row rank p and the array

has full column rank n, then a unique solution
exists.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)

A

B� �
� �
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 103
LA_LEAST_SQUARES The LA_LEAST_SQUARES function is used
to solve the linear least-squares problem:

Minimizex ||Ax - b||2

where A is a (possibly rank-deficient) n-column
by m-row array, b is an m-element input vector,
and x is the n-element solution vector.

LA_LINEAR_EQUATION The LA_LINEAR_EQUATION function uses
LU decomposition to solve a system of linear
equations, AX = B, and provides optional error
bounds and backward error estimates. The
result is an n-element vector whose type is
identical to A.

The LA_LINEAR_EQUATION function may
also be used to solve for multiple systems of
linear equations, with each column of B
representing a different set of equations. In this
case, the result is a k-by-n array where each of
the k columns represents the improved solution
vector for that set of equations.

LA_LUDC The LA_LUDC procedure computes the LU
decomposition of an n-column by m-row array
as:

A = P L U

where P is a permutation matrix, L is lower
trapezoidal with unit diagonal elements (lower
triangular if n = m), and U is upper trapezoidal
(upper triangular if n = m).

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

104 Chapter 1: Overview of New Features in IDL 5.6
LA_LUMPROVE The LA_LUMPROVE function uses LU
decomposition to improve the solution to a
system of linear equations, AX = B, and
provides optional error bounds and backward
error estimates. The result is an n-element
vector.

The LA_LUMPROVE function may also be
used to improve the solutions for multiple
systems of linear equations, with each column
of B representing a different set of equations. In
this case, the result is a k-by-n array where each
of the k columns represents the improved
solution vector for that set of equations.

LA_LUSOL The LA_LUSOL function is used in
conjunction with the LA_LUDC procedure to
solve a set of n linear equations in n unknowns,
AX = B. The parameter A is not the original
array, but its LU decomposition, created by the
routine LA_LUDC. The result is an n-element
vector.

The LA_LUSOL function may also be used to
solve for multiple systems of linear equations,
with each column of B representing a different
set of equations. In this case, the result is a k-by-
n array where each of the k columns represents
the solution vector for that set of equations.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 105
LA_SVD The LA_SVD procedure computes the singular
value decomposition (SVD) of an n-columns by
m-row array as the product of orthogonal and
diagonal arrays:

• A is real: A = U S VT

• A is complex: A = U S VH

where U is an orthogonal array containing the
left singular vectors, S is a diagonal array
containing the singular values, and V is an
orthogonal array containing the right singular
vectors. The superscript T represents the
transpose while the superscript H represents the
Hermitian, or transpose complex conjugate.

If n < m then U has dimensions (n x m), S has
dimensions (n x n), and VH has dimensions
(n x n). If n ≥ m then U has dimensions (m x m),
S has dimensions (m x m), and VH has
dimensions (n x m).

LA_TRIDC The LA_TRIDC procedure computes the LU
decomposition of a tridiagonal (n x n) array as
Array = L U, where L is a product of
permutation and unit lower bidiagonal arrays,
and U is upper triangular with nonzero elements
only in the main diagonal and the first two
superdiagonals.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

106 Chapter 1: Overview of New Features in IDL 5.6
LA_TRIMPROVE The LA_TRIMPROVE function improves the
solution to a system of linear equations with a
tridiagonal array, AX = B, and provides optional
error bounds and backward error estimates. The
result is an n-element vector.

The LA_TRIMPROVE function may also be
used to improve the solutions for multiple
systems of linear equations, with each column
of B representing a different set of equations. In
this case, the result is a k-by-n array where each
of the k columns represents the improved
solution vector for that set of equations.

LA_TRIQL The LA_TRIQL procedure uses the QL and QR
variants of the implicitly-shifted QR algorithm
to compute the eigenvalues and eigenvectors of
a symmetric tridiagonal array. The
LA_TRIRED routine can be used to reduce a
real symmetric (or complex Hermitian) array to
tridiagonal form suitable for input to this
procedure.

LA_TRIRED The LA_TRIRED procedure reduces a real
symmetric or complex Hermitian array to real
tridiagonal form T. If the array is real symmetric
then the decomposition is A = Q T QT, where Q
is orthogonal. If the array is complex Hermitian
then the decomposition is A = Q T QH, where Q
is unitary. The superscript T represents the
transpose while superscript H represents the
Hermitian, or transpose complex conjugate.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 107
LA_TRISOL The LA_TRISOL function is used in
conjunction with the LA_TRIDC procedure to
solve a set of n linear equations in n unknowns,
AX = B, where A is a tridiagonal array. The
parameter A is input not as the original array,
but as its LU decomposition, created by the
routine LA_TRIDC. The result is an n-element
vector.

The LA_TRISOL function may also be used to
solve for multiple systems of linear equations,
with each column of B representing a different
set of equations. In this case, the result is a k-by-
n array where each of the k columns represents
the solution vector for that set of equations.

MAP_PROJ_FORWARD The MAP_PROJ_FORWARD function
transforms map coordinates from
longitude/latitude to (X, Y) Cartesian
coordinates, using either the !MAP system
variable or a supplied map projection variable.

MAP_PROJ_INIT The MAP_PROJ_INIT function initializes a
mapping projection, using either the IDL or
General Cartographic Transformation Package
(GCTP) map projections. The result is a !MAP
structure containing the map parameters, which
can be used as input to the map transformation
functions MAP_PROJ_FORWARD and
MAP_PROJ_INVERSE.

MAP_PROJ_INVERSE The MAP_PROJ_INVERSE function
transforms map coordinates from (X, Y)
Cartesian coordinates to longitude/latitude,
using either the !MAP system variable or a
supplied map projection variable.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

108 Chapter 1: Overview of New Features in IDL 5.6
MATRIX_POWER The MATRIX_POWER function computes the
product of a matrix with itself. For example, the
fifth power of array A is A # A # A # A # A.
Negative powers are computed using the matrix
inverse of the positive power.

PRODUCT The PRODUCT function returns the product of
elements within an array. The product of the
array elements can also be computed over a
given dimension.

REGISTER_CURSOR The REGISTER_CURSOR procedure
associates the given name with the given cursor
information. This name can then be used with
the IDLgrWindow::SetCurrentCursor method.

SHMDEBUG It can be difficult to know when a variable
created with the SHMVAR function loses its
reference to the underlying memory segment
created by SHMMAP.

The SHMDEBUG function is used to enable a
debugging mode in which IDL prints an
informational message including a traceback
every time such a variable loses its reference to
the underlying segment. SHMDEBUG returns
the previous setting of the debugging state.

SHMMAP The SHMMAP procedure maps anonymous
shared memory, or local disk files, into the
memory address space of the currently
executing IDL process. Mapped memory
segments are associated with an IDL array
specified by the user as part of the call to
SHMMAP. The type and dimensions of the
specified array determine the length of the
memory segment.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 109
SHMUNMAP The SHMUNMAP procedure is used to remove
a memory segment previously created by
SHMMAP from the system. If the segment has
no variables currently accessing it (that is, if its
reference count is zero) the segment is
immediately removed from the system. If the
segment has variables still referencing it, the
unmapping is delayed until the last such
variable drops its reference.

SHMVAR The SHMVAR function creates an IDL array
variable that uses the memory from a current
mapped memory segment created by the
SHMMAP procedure. Variables created by
SHMVAR are used in much the same way as
any other IDL variable, and provide the IDL
user with the ability to alter the contents of
anonymous shared memory or memory mapped
files.

SKIP_LUN The SKIP_LUN procedure reads data in an
open file and moves the file pointer. It is useful
in situations where it is necessary to skip over a
known amount of data in a file without the
requirement of having the data available in an
IDL variable.

SWAP_ENDIAN_INPLACE The SWAP_ENDIAN_INPLACE procedure
reverses the byte ordering of arbitrary scalars,
arrays or structures. It can make “big endian”
number “little endian” and vice-versa. Note that
the BYTEORDER procedure can be used to
reverse the byte ordering of scalars and arrays
(SWAP_ENDIAN_INPLACE also allows
structures).

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
What’s New in IDL 5.6 New and Enhanced IDL Routines

110 Chapter 1: Overview of New Features in IDL 5.6
TRUNCATE_LUN The TRUNCATE_LUN procedure truncates the
contents of a file open for write access at the
current position of the file pointer. After this
operation, all data before the current file pointer
remains intact, and all data following the file
pointer are gone. The position of the current file
pointer is not altered.

WIDGET_COMBOBOX The WIDGET_COMBOBOX function creates
“combobox” widgets, which are similar to
“droplist” widgets. The main difference
between the combobox widget and the droplist
widget is that the text field of the combobox can
be made editable, allowing the user to enter a
value that is not on the list.

WIDGET_TAB The WIDGET_TAB function is used to create a
tab widget. Tab widgets present a display area
on which different “pages” (base widgets and
their children) can be displayed by selecting the
appropriate tab.

WIDGET_TREE The WIDGET_TREE function is used to create
and populate a tree widget. The tree widget
presents a hierarchical view that can be used to
organize a wide variety of data structures and
information.

New Routine Description

Table 1-13: New Routines in IDL 5.6 (Continued)
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 111
IDL Routine Enhancements

The following is a list of new and updated keywords, arguments, and/or return values
to existing IDL routines.

ATAN

BESELI, BESELJ, BESELK, BESELY

Keyword or item Description

PHASE If this keyword is set, and the argument is a complex
number Z, then the complex phase angle is computed as
ATAN(Imaginary(Z), Real_part(Z)). If this keyword is not
set then the complex arctangent is computed as described
above. If the argument is not complex, or if two arguments
are present, then this keyword is ignored.

Tip - Using the PHASE keyword is equivalent to computing
ATAN(Imaginary(Z), Real_part(Z)), but uses less memory
and is faster.

Keyword or item Description

DOUBLE Set this keyword equal to one to return a double-precision
result, or to zero to return a single-precision result. The
computations will always be done using double precision.
The default is to return a single-precision result if both
inputs are single precision, and to return a double-precision
result in all other cases.

ITER Set this keyword equal to a named variable that will
contain the number of iterations performed. If the routine
converged, the stored value will be equal to the order N. If
X or N are arrays, ITER will contain a scalar representing
the maximum number of iterations.

Note - If the routine did not converge for an element of X,
the corresponding element of the Result array will be set to
the IEEE floating-point value NaN, and ITER will contain
the largest order that would have converged for that X
value.
What’s New in IDL 5.6 New and Enhanced IDL Routines

112 Chapter 1: Overview of New Features in IDL 5.6
BETA

COMPILE_OPT

CURVEFIT

DIGITAL_FILTER

ERF

Keyword or item Description

Complex input
arguments

The BETA function now accepts complex arguments.

Keyword or item Description

STRICTARRSUBS
Option

Specifying STRICTARRSUBS will cause IDL to treat out-
of-range array subscripts within the body of the routine
containing the COMPILE_OPT statement as an error.

Keyword or item Description

YERROR Set this keyword to a named variable that will contain the
standard error between YFIT and Y.

Keyword or item Description

DOUBLE Set this keyword to use double-precision for computations
and to return a double-precision result. Set DOUBLE=0 to
use single-precision for computations and to return a
single-precision result. The default is /DOUBLE if the
Flow input is double precision, otherwise the default is
DOUBLE=0.

Keyword or item Description

Complex input
argument

The ERF function now accepts complex arguments.
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 113
ERFC

ERFCX

EXPINT

FILE_DELETE

GAMMA

Keyword or item Description

Complex Input
argument

The ERFC function now accepts complex arguments.

Keyword or item Description

Complex input
argument

The ERFCX function now accepts complex arguments.

Keyword or item Description

ITER Set this keyword equal to a named variable that will
contain the actual number of iterations performed.

Keyword or item Description

ALLOW_NON-
EXISTENT

If set, FILE_DELETE will quietly ignore attempts to
delete a non-existent file. Other errors will still be reported.
The QUIET keyword can be used instead to suppress all
errors.

VERBOSE The VERBOSE keyword causes FILE_DELETE to issue
an informative message for every file it deletes.

Keyword or item Description

Complex input
argument

The GAMMA function now accepts complex arguments.
What’s New in IDL 5.6 New and Enhanced IDL Routines

114 Chapter 1: Overview of New Features in IDL 5.6
GAUSSFIT

HELP

HISTOGRAM

IBETA

Keyword or item Description

CHISQ Set this keyword to a named variable that will
contain the value of the chi-square goodness-of-
fit.

SIGMA Set this keyword to a named variable that will
contain the 1-sigma error estimates of the returned
parameters.

YERROR Set this keyword to a named variable that will
contain the standard error between YFIT and Y.

Keyword or item Description

SHARED_MEMORY Set this keyword to display information about all
current shared memory and memory mapped file
segments mapped into the current IDL process via
the SHMMAP procedure.

Keyword or item Description

LOCATIONS Set this keyword to a named variable in which to
return the starting locations for each bin. The
starting locations are given by MIN +
v*BINSIZE, with v = 0,1,...,NBINS-1.
LOCATIONS has the same number of elements as
the Result, and has the same type as the input
Array.

Keyword or item Description

A A may now be complex.
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 115
IGAMMA

ISOCONTOUR

B B may now be complex.

Z Z may now be complex. If Z is not complex then
the values must be in the range [0, 1].

Keyword or item Description

A A may now be complex.

Z Z may now be complex. If Z is not complex then
the values must be greater than or equal to zero.

Keyword or item Description

C_LABEL_INTERVAL Set this keyword to a vector of values indicating
the distance (measured parametrically relative to
the length of each contour path) between labels
for each contour level. If the number of contour
levels exceeds the number of provided intervals,
the C_LABEL_INTERVAL values will be
repeated cyclically. The default is 0.4.

C_LABEL_SHOW Set this keyword to a vector of integers. For each
contour value, if the corresponding value in the
C_LABEL_SHOW vector is non-zero, the
contour line for that contour value will be labeled
(with the corresponding label information
returned via the OUT_LABEL_POLYS,
OUT_LABEL_OFFSETS, and
OUT_LABEL_STRINGS keywords). If the
number of contour levels exceeds the number of
elements in this vector, the C_LABEL_SHOW
values will be repeated cyclically. The default is 0
indicating that no contour levels will be labeled.

Keyword or item Description
What’s New in IDL 5.6 New and Enhanced IDL Routines

116 Chapter 1: Overview of New Features in IDL 5.6
KEYWORD_SET

OUT_LABEL_OFFSETS Set this keyword to a named variable that upon
return will contain a vector of offsets
(parameterized to the corresponding contour line)
indicating the positions of the contour labels.

Note - The C_LABEL_SHOW keyword should be
specified if this keyword is used.

OUT_LABEL_POLYLINES Set this keyword to a named variable that upon
return will contain a vector of polyline indices,
[P0, P1, …], that indicate which contour lines are
labeled. Pi corresponds to the ith polyline
specified via the Outconn argument. Note that if a
given contour line has more than one label along
its perimeter, then the corresponding polyline
index may appear more than once in the
LABEL_POLYS vector.

Note - The C_LABEL_SHOW keyword should be
specified if this keyword is used.

OUT_LABEL_STRINGS Set this keyword to a named variable that upon
return will contain a vector of strings, [str0, str1,
…], that indicate the label strings.

Note - The C_LABEL_SHOW keyword should be
specified if this keyword is used.

Keyword or item Description

Return value The KEYWORD_SET function returns True (1)
if:

• Expression is a scalar or 1-element array with
a non-zero value.

• Expression is a structure.

• Expression is an ASSOC file variable.

KEYWORD_SET returns False (0) if Expression
is undefined, or is a scalar or 1-element array with
a zero value.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 117
LNGAMMA

MAKE_DLL

MEDIAN

Keyword or item Description

Complex input argument The LNGAMMA function now accepts complex
arguments.

Keyword or item Description

REUSE_EXISTING If this keyword is set, and the sharable library file
specified by OutputFile already exists,
MAKE_DLL returns without building the
sharable library again. Use this keyword in
situations where you wish to ensure that a library
exists, but only want to build it if it does not.
Combining the REUSE_EXISTING and
DLL_PATH keywords allows you to get a path to
the library in a platform independent manner,
building the library only if necessary.

Keyword or item Description

DIMENSION Set this keyword to the dimension over which to
find the median values of an array. If this keyword
is not present or is zero, the median is found over
the entire array and is returned as a scalar value. If
this keyword is present and nonzero, the result is a
“slice” of the input array that contains the median
value elements, and the return value will be an
array of one dimension less than the input array.
What’s New in IDL 5.6 New and Enhanced IDL Routines

118 Chapter 1: Overview of New Features in IDL 5.6
SVDFIT

SWAP_ENDIAN

Keyword or item Description

SING_VALUES Set this keyword to a named variable in which to
return the singular values from the SVD. Singular
values which have been removed will be set to zero.

STATUS Set this keyword to a named variable that will contain
the status of the computation. Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: Singular values were found and
were removed. STATUS contains the number of
singular values.

Note - If STATUS is not specified, any error
messages will be output to the screen.

TOL Set this keyword to the tolerance used when
removing singular values. The default is 10-5 for
single precision, and 2x10-12 for double precision
(these defaults are approximately 100 and 10000
times the machine precisions for single and double
precision, respectively).

Setting TOL to a larger value may remove
coefficients that do not contribute to the solution,
which may reduce the errors on the remaining
coefficients.

Keyword or item Description

SWAP_IF_BIG_ENDIAN If this keyword is set, the swap request will only be
performed if the platform running IDL uses “big
endian” byte ordering. On little endian machines, the
SWAP_ENDIAN request quietly returns without
doing anything. Note that this keyword does not refer
to the byte ordering of the input data, but to the
computer hardware.
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 119
WIDGET_BASE

SWAP_IF_LITTLE_
ENDIAN

If this keyword is set, the swap request will only be
performed if the platform running IDL uses “little
endian” byte ordering. On big endian machines, the
SWAP_ENDIAN request quietly returns without
doing anything. Note that this keyword does not refer
to the byte ordering of the input data, but to the
computer hardware.

Keyword or item Description

TLB_ICONIFY_EVENTS Set this keyword when creating a top-level base to
make that base return an event when the base is
iconified or restored by the user.

TLB_MOVE_EVENTS Set this keyword when creating a top-level base to
make that base return an event when the base is
moved on the screen by the user.

TOOLBAR Set this keyword to indicate that the base is used to
hold bitmap buttons that make up a toolbar.

Note - Setting this keyword does not cause any
changes in behavior; its only affect is to slightly alter
the appearance of the bitmap buttons on the base for
cosmetic reasons.

Note - On Motif platforms, if bitmap buttons are on a
toolbar base that is also EXCLUSIVE or
NONEXCLUSIVE, they will not have a separate
“toggle” indicator, they will be grouped closely
together, and will have a two-pixel shadow border.

Note - This keyword has no effect on Windows
platforms.

Keyword or item Description
What’s New in IDL 5.6 New and Enhanced IDL Routines

120 Chapter 1: Overview of New Features in IDL 5.6
Iconify Event Structure Top-level widget bases return the following event
structure when the base is iconified or restored and
the base was created with the
TLB_ICONIFY_EVENTS keyword set:

{ WIDGET_TLB_ICONIFY, ID:0L, TOP:0L,
HANDLER:0L, ICONIFIED:0 }

ID is the widget ID of the base generating the event.
TOP is the widget ID of the top level widget
containing ID. HANDLER contains the widget ID of
the widget associated with the handler routine.
ICONIFIED is 1 (one) if the user iconified the base
and 0 (zero) if the user restored the base.

Move Event Structure Top-level widget bases return the following event
structure when the base is moved and the base was
created with the TLB_MOVE_EVENTS keyword
set:

{ WIDGET_TLB_MOVE, ID:0L, TOP:0L,
HANDLER:0L, X:0L, Y:0L }

ID is the widget ID of the base generating the event.
TOP is the widget ID of the top level widget
containing ID. HANDLER contains the widget ID of
the widget associated with the handler routine. X and
Y are the new location of the top left corner of the
base.

Note - On Windows, move events are generated while
dragging. On UNIX, move events are generated only
on the mouse-up.

Note - If both TLB_SIZE_EVENTS and
TLB_MOVE_EVENTS are enabled, a user resize
operation that causes the top left corner of the base to
move will generate both a move event and a resize
event.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 121
WIDGET_BUTTON

WIDGET_CONTROL

Keyword or item Description

CHECKED_MENU Set this keyword on a menu entry button to enable the
ability to place a check or selection box next to the menu
entry. The parent widget of the button must be either a
button widget created with the MENU keyword or a base
widget created with the CONTEXT_MENU keyword.

TOOLTIP Set this keyword to a string that will be displayed when the
cursor hovers over the widget. For UNIX platforms, this
string must be non-zero in length.

Keyword or item Description

COMBOBOX_
ADDITEM

This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to a string that specifies a new item to add
to the list of the combobox. By default, the item will be
added to the end of the list. The item can be added to a
specified position in the list by setting the
COMBOBOX_INDEX keyword in the same call to
WIDGET_CONTROL.

COMBOBOX_
DELETEITEM

This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based
index of the combobox element to be deleted from the list.
If the specified element is outside the range of existing
elements, no element is deleted.
What’s New in IDL 5.6 New and Enhanced IDL Routines

122 Chapter 1: Overview of New Features in IDL 5.6
COMBOBOX_
INDEX

This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based
index at which a new item will be added to the list when
using the COMBOBOX_ADDITEM keyword. If the
supplied index is outside the range of zero to the length of
the existing list, the item is not added to the list.

Note - You can retrieve the length of the existing list using
the COMBOBOX_NUMBER keyword to
WIDGET_INFO.

DRAW_KEY-
BOARD_EVENTS

This keyword applies to widgets created with the
WIDGET_DRAW function.

Set this keyword equal to 1 (one) or 2 to make the draw
widget generate an event when it has the keyboard focus
and a key is pressed or released. (The method by which a
widget receives the keyboard focus is dependent on the
window manager in use.) The value of the key pressed is
reported in either the CH or the KEY field of the event
structure, depending on the type of key pressed.

• If this keyword is set equal to 1, the draw widget will
generate an event when a “normal” key is pressed.
“Normal” keys include all keys except function keys
and the modifier keys: SHIFT, CONTROL, CAPS LOCK,
and ALT. If a modifier key is pressed at the same time
as a normal key, the value of the modifier key is
reported in the MODIFIERS field of the event structure.

• If this keyword is set equal to 2, the draw widget will
generate an event when either a normal key or a
modifier key is pressed. Values for modifier keys are
reported in the KEY field of the event structure, and the
MODIFIERS field contains zero.

Note - Keyboard events are never generated for function
keys.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 123
SET_BUTTON This keyword applies to widgets created with the
WIDGET_BUTTON function.

This keyword changes the current state of toggle buttons. If
set equal to zero, every toggle button in the hierarchy
specified by Widget_ID is set to the unselected state. If set
to a nonzero value, the action depends on the type of base
holding the buttons.

SET_COMBOBOX_
SELECT

This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based
index of the combobox list element to be displayed. If the
specified element is outside the range of existing elements,
the selection remains unchanged.

SET_TAB_
CURRENT

This keyword applies to widgets created with the
WIDGET_TAB function.

Set this keyword equal to the zero-based index of the tab to
be set as the current (visible) tab. If the index value is
invalid, the value is quietly ignored.

Keyword or item Description
What’s New in IDL 5.6 New and Enhanced IDL Routines

124 Chapter 1: Overview of New Features in IDL 5.6
SET_TAB_
MULTILINE

This keyword applies to widgets created with the
WIDGET_TAB function.

This keyword controls how tabs appear on the tab widget
when all of the tabs do not fit on the widget in a single row.
This keyword behaves differently on Windows and Motif
systems.

Windows

Set this keyword to cause tabs to be organized in a multi-
line display when the width of the tabs exceeds the width
of the largest child base widget. If possible, IDL will create
tabs that display the full tab text.

If MULTILINE=0 and LOCATION=0 or 1, tabs that
exceed the width of the largest child base widget are shown
with scroll buttons, allowing the user to scroll through the
tabs while the base widget stays immobile.

If LOCATION=1 or 2, a multiline display is always used if
the tabs exceed the height of the largest child base widget.

UNIX

Set this keyword equal to an integer that specifies the
maximum number of tabs to display per row in the tab
widget. If this keyword is not specified (or is explicitly set
equal to zero) all tabs are placed in a single row.

SET_TREE_
BITMAP

This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword equal to a 16x16x3 array representing an
RGB image that will be displayed next to the node in the
tree widget.

Set this keyword equal to zero to revert to the appropriate
default system bitmap.

SET_TREE_
EXPANDED

This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword equal to a nonzero value to expand the
specified tree widget folder. Set this keyword equal to zero
to collapse the specified tree widget folder.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 125
SET_TREE_
SELECT

This keyword applies to widgets created with the
WIDGET_TREE function.

This keyword has two modes of operation, depending on
the widget ID passed to WIDGET_CONTROL.

If the specified widget ID is for the root node of the tree
widget (the tree widget whose Parent is a base widget):

• If the tree widget is in multiple-selection mode and
SET_TREE_SELECT is set to an array of widget IDs
corresponding to tree widgets that are nodes in the tree,
those nodes are selected.

• If the tree widget is not in multiple-selection mode and
SET_TREE_SELECT is set to a single widget ID
corresponding to a tree widget that is a node in the tree,
that node is selected.

• If the keyword is set to zero, all selections in the tree
widget are cleared.

If the specified widget ID is a tree widget that is a node in a
tree:

• If the keyword is set to a nonzero value, the specified
node is selected.

• If the keyword is set to zero, the specified node is
deselected.

Note - If the tree widget is in multiple-selection mode, the
selection changes made to the tree widget via this keyword
are additive — that is, the current selections are retained
and any additional nodes specified by
SET_TREE_SELECT are also selected.

Keyword or item Description
What’s New in IDL 5.6 New and Enhanced IDL Routines

126 Chapter 1: Overview of New Features in IDL 5.6
SET_TREE_
VISIBLE

This keyword applies to widgets created with the
WIDGET_TREE function and whose parent widget was
also created using the WIDGET_TREE function (that is,
tree widgets that are nodes of another tree).

Set this keyword to make the specified tree node visible to
the user. Setting this keyword has two possible effects:

1. If the specified node is inside a collapsed folder, the
folder and all folders above it are expanded to reveal
the node.

2. If the specified node is in a portion of the tree that is
not currently visible because the tree has scrolled
within the parent base widget, the tree view scrolls so
that the selected node is at the top of the base widget.

Use of this keyword does not affect the tree widget
selection state.

TABLE_BLANK This keyword applies to widgets created with the
WIDGET_TABLE function.

Set this keyword equal to a nonzero value to cause the
specified cells to be blank. Set this keyword equal to zero
to cause the specified cells to display values as usual.

If the USE_TABLE_SELECT keyword is set equal to one,
the currently selected cells are blanked or restored. If
USE_TABLE_SELECT is set equal to an array, the
specified cells are blanked or restored. If
USE_TABLE_SELECT is not set, the entire table is
blanked or restored.

TABLE_DISJOINT_
SELECTION

This keyword applies to widgets created with the
WIDGET_TABLE function.

Set this keyword to enable the ability to select multiple
rectangular regions of cells.

TLB_ICONIFY_
EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to make the top-level base return an event
when the base is iconified or restored by the user.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 127
TLB_MOVE_
EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to make the top-level base return an event
when the base is moved by the user. Note that if
TLB_SIZE_EVENTS are also enabled, a user resize
operation that causes the top left corner of the base widget
to move will generate both a move event and a resize event.

TLB_SIZE_
EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to make the top-level base return an event
when the base is resized by the user. Note that if
TLB_MOVE_EVENTS are also enabled, a user resize
operation that causes the top left corner of the base widget
to move will generate both a move event and a resize event.

TOOLTIP This keyword applies to widgets created with the
WIDGET_BUTTON and WIDGET_DRAW functions.

Set this keyword to a string that will be displayed when the
cursor hovers over the specified widget. For UNIX
platforms, this string must be non-zero in length, which
means that a tooltip can be modified but not be removed on
UNIX versions of IDL.

Keyword or item Description
What’s New in IDL 5.6 New and Enhanced IDL Routines

128 Chapter 1: Overview of New Features in IDL 5.6
WIDGET_DRAW

Keyword or item Description

KEYBOARD_EVENTS Set this keyword equal to 1 (one) or 2 to make
the draw widget generate an event when it has
the keyboard focus and a key is pressed or
released. (The method by which a widget
receives the keyboard focus is dependent on
the window manager in use.) The value of the
key pressed is reported in either the CH or the
KEY field of the event structure, depending on
the type of key pressed.

• If this keyword is set equal to 1, the draw
widget will generate an event when a
“normal” key is pressed. “Normal” keys
include all keys except function keys and
the modifier keys: SHIFT, CONTROL,
CAPS LOCK, and ALT. If a modifier key is
pressed at the same time as a normal key,
the value of the modifier key is reported
in the MODIFIERS field of the event
structure.

• If this keyword is set equal to 2, the draw
widget will generate an event when either
a normal key or a modifier key is pressed.
Values for modifier keys are reported in
the KEY field of the event structure, and
the MODIFIERS field contains zero.

Note - Keyboard events are never generated
for function keys.

TOOLTIP Set this keyword to a string that will be
displayed when the cursor hovers over the
widget. For UNIX platforms, this string must
be non-zero in length.
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 129
WIDGET_INFO

Keyword or item Description

BUTTON_SET This keyword applies to widgets created with the
WIDGET_BUTTON function.

Set this keyword to return the “set” state of a widget
button. If the button is currently set, 1 (one) is
returned. If the button is currently not set, 0 (zero) is
returned. This keyword is intended for use with
exclusive, non-exclusive and checked menu buttons.

COMBOBOX_GETTEXT This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to return the current text from the
text box of the specified combobox widget. Note
that when using an editable combobox, the text
displayed in the text box may not be an item from
the list of values in the combobox list. To obtain the
index of the selected item, inspect the INDEX field
of the event structure returned by the combobox
widget.

COMBOBOX_NUMBER This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to return the number of elements
currently contained in the list of the specified
combobox widget.

FONTNAME This keyword applies to all widgets.

Set this keyword to return a string containing the
name of the font being used by the specified widget.
The returned name can then be used when creating
other widgets or with the SET_FONT keyword to
the DEVICE procedure.
What’s New in IDL 5.6 New and Enhanced IDL Routines

130 Chapter 1: Overview of New Features in IDL 5.6
MAP This keyword applies to all widgets.

Set this keyword to return True (1) if the widget
specified by Widget_ID is mapped (visible), or False
(0) otherwise. Note that when a base widget is
unmapped, all of its children are unmapped. If
WIDGET_INFO reports that a particular widget is
unmapped, it may be because a parent in the widget
hierarchy has been unmapped.

SENSITIVE This keyword applies to all widgets.

Set this keyword to return True (1) if the widget
specified by Widget_ID is sensitive (enabled), or
False (0) otherwise. Note that when a base is made
insensitive, all its children are made insensitive. If
WIDGET_INFO reports that a particular widget is
insensitive, it may be because a parent in the widget
hierarchy has been made insensitive.

TAB_CURRENT This keyword applies to widgets created with the
WIDGET_TAB function.

Set this keyword to return the zero-based index of
the current tab in the tab widget.

TAB_MULTILINE This keyword applies to widgets created with the
WIDGET_TAB function.

Set this keyword to return the current setting of the
multi-line mode for the tab widget.

TAB_NUMBER This keyword applies to widgets created with the
WIDGET_TAB function.

Set this keyword to return the number of tabs
contained in the tab widget.

TABLE_DISJOINT_
SELECTION

This keyword applies to widgets created with the
WIDGET_TABLE function.

Set this keyword to return 1 (one) if the widget
specified by Widget_ID has disjoint selection
enabled. Otherwise, 0 (zero) is returned.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 131
TLB_ICONIFY_EVENTS This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to return 1 if the top-level base
widget specified by Widget_ID is set to return
iconify events. Otherwise, 0 is returned.

TLB_MOVE_EVENTS This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to return 1 if the top-level base
widget specified by Widget_ID is set to return move
events. Otherwise, 0 is returned.

TLB_SIZE_EVENTS This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to return 1 if the top-level base
widget specified by Widget_ID is set to return resize
events. Otherwise, 0 is returned.

TOOLTIP This keyword applies to widgets created with the
WIDGET_BUTTON and WIDGET_DRAW
functions.

Set this keyword to have the WIDGET_INFO
function return the text of the tooltip of the widget. If
the widget does not have a tooltip, a null string will
be returned.

TREE_EXPANDED This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword to return 1 (one) if the specified
tree widget node is a folder that is expanded, or 0
(zero) if the specified node is a folder that is
collapsed.

Note - Only tree widget nodes created with the
FOLDER keyword can be expanded or collapsed.
This keyword will always return 0 (zero) if the
specified tree widget node is not a folder.

Keyword or item Description
What’s New in IDL 5.6 New and Enhanced IDL Routines

132 Chapter 1: Overview of New Features in IDL 5.6
TREE_ROOT This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword to return the widget ID of the root
node of the tree widget hierarchy of which Widget
ID is a part. The root node is the tree widget whose
parent is a base widget.

TREE_SELECT This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword to return information about the
nodes selected in the specified tree widget. This
keyword has two modes of operation, depending on
the widget ID passed to WIDGET_INFO:

• If the specified widget ID is for the root node of
the tree widget (the tree widget whose Parent is
a base widget), this keyword returns either the
widget ID of the selected node or (if multiple
nodes are selected) an array of widget IDs of the
selected nodes. If no nodes are selected, -1 is
returned.

• If the specified widget ID is a tree widget that is
a node in a tree, this keyword returns 1 (one) if
the node is selected or 0 (zero) if it is not
selected.

VISIBLE This keyword applies to all widgets.

Set this keyword to return True (1) if the widget
specified by Widget_ID is visible, or False (0)
otherwise. A widget is visible if:

• it has been realized,

• it and all of its ancestors are mapped.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 133
WIDGET_LABEL

WIDGET_TABLE

WRITE_TIFF

Keyword or item Description

SUNKEN_FRAME Set this keyword to create a three dimensional,
bevelled border around the label widget. The
resulting frame gives the label a “sunken”
appearance, similar to what is often seen in
application status bars.

Keyword or item Description

DISJOINT_SELECTION Set this keyword to enable the ability to select
multiple rectangular regions of cells. The regions
can be overlapping, touching, or entirely distinct.

Setting this keyword changes the data structures
returned by the TABLE_SELECT keyword to
WIDGET_INFO and the GET_VALUE keyword to
WIDGET_CONTROL. Similarly, the data structures
you supply via the SET_TABLE_SELECT and
SET_VALUE keywords to WIDGET_CONTROL
are different in disjoint mode.

Keyword or item Description

COMPRESSION Set this keyword to select the type of compression to
be used:

• 0 = none (default)

• 2 = PackBits

• 3 = JPEG (ITIFF files)
What’s New in IDL 5.6 New and Enhanced IDL Routines

134 Chapter 1: Overview of New Features in IDL 5.6
XROI

Keyword or item Description

X_SCROLL_SIZE Set this keyword to the width of the scroll
window. If this keyword is larger than the
image width then it will be set to the image
width. The default is to use the image width
or the screen width, whichever is smaller.

Y_SCROLL_SIZE Set this keyword to the height of the scroll
window. If this keyword is larger than the
image height then it will be set to the image
height. The default is to use the image height
or the screen height, whichever is smaller.
New and Enhanced IDL Routines What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 135
ION 1.6 Enhancements

ION (IDL On the Net) is now released with IDL. ION Script and ION Java are
packages for publishing IDL-driven applications on the Web. They are now included
on the IDL CD as an optional feature. An extra-cost ION license is required to use
ION Script and ION Java. For more information on ION, see “Introduction to ION”
in the ION manual.

ION Script Enhancements

This section discusses the following new features and enhancements in ION Script
1.6:

• New ION_OBJECT Tag

• New FORMAT Attribute For ION Script Variables

• ION_EVALUATE and ION_VARIABLE Can Now Be Used Inside <IDL>
Blocks

• New Support For MULTIPLE Attribute In HTML SELECT Tag

• New Example For Passing Data From IDL to ION Script

New ION_OBJECT Tag

In ION Script 1.4, it was only possible to embed IDL-generated text (via
ION_DATA_OUT) and 2-D images (via ION_IMAGE) in your Web application. IDL
is capable of generating (and Web servers are capable of passing) numerous types of
data, such as VRML, MPEG, and WAV. With the addition of the ION_OBJECT tag,
ION_PARAM tag, and $ION.IDLURL system variable in ION 1.6, it is now possible
to embed in your Web application any type of data that IDL can generate or locate.

For more information and examples, see “ION_OBJECT” in Chapter 5 of the ION
Script User’s Guide manual.

New FORMAT Attribute For ION Script Variables

The ION_EVALUATE and ION_VARIABLE tags now support a FORMAT attribute,
which allows you to specify the format of your variable using a C-style printf()
format specifier.

For more information, see the description of the FORMAT attribute for
“ION_EVALUATE” or “ION_VARIABLE” in Chapter 5 of the ION Script User’s
Guide manual.
What’s New in IDL 5.6 ION 1.6 Enhancements

136 Chapter 1: Overview of New Features in IDL 5.6
ION_EVALUATE and ION_VARIABLE Can Now Be Used Inside
<IDL> Blocks

In ION 1.4, the only part of an <IDL> block that was evaluated by the ION Script
parser before sending the data to IDL was ION Script variables. In ION 1.6, you can
now include ION_EVALUTE and ION_VARIABLE tags inside an <IDL> block.
These tags are first evaluated by the parser, then ION Script variables are evaluated.
This allows you to format ION Script variables before sending them to IDL.

See “Using ION_EVALUTE and ION_VARIABLE Tags in an IDL Block” in
Chapter 5 of the ION Script User’s Guide manual for an example.

New Support For MULTIPLE Attribute In HTML SELECT Tag

When the MULTIPLE attribute is specified for the HTML <SELECT> tag, the user is
allowed to select multiple options. Suppose a user submits a form after selecting the
following options in a SELECT element named Region:

When the user submits the ION_FORM, the URL sent to the server takes the
following form:

http://host/cgi-bin/ion-p.exe?Region=East&Region=West

In ION 1.4, the $Form variable created on the page that is loaded when this form is
submitted would contain the value “West” (the last value for Region specified in the
query string). In ION 1.6, the $Form variable created for a SELECT element contains
the value of all selected options, separated by the “|” character. Therefore, in the
above example, the value of the $Form variable $Form.Region would be “East|West”
if the user selected the “East” and “West” options and submitted the form.

For more information and examples, see “Handling Multiple Selections in a SELECT
Element” in Chapter 4 of the ION Script User’s Guide manual.

Figure 1-9: Example of Using the MULTIPLE Attribute
ION 1.6 Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 137
New Example For Passing Data From IDL to ION Script

A new example illustrating how to pass data from IDL to ION Script has been added
to the Advanced examples page. Load the page index_examples.ion, and click the
“Passing IDL Variables to ION Script Example” link.

ION Java Enhancements

This section discusses the following new features and enhancements in ION Java 1.6:

• IONGr2Canvas Class Now Obsolete

• IDL Command Execution Status Now Properly Reported

• New IONVariable Methods Return Dimensioned Results

• New Supported Keywords for Contours, Maps, Plots, and Surfaces

IONGr2Canvas Class Now Obsolete

Because there is a more efficient method for accessing IDL Object Graphics in ION
Java, the IONGr2Canvas class has been obsoleted. See “Object Graphics in ION” in
Chapter 5 of the ION Java User’s Guide manual for details on how to use Object
Graphics in ION Java.

You can also run the Object Graphics example on the advanced.html page in the
idl56\products\ion16\ion_java\examples directory (Windows) or
idl_5.6/products/ion_1.6/ion_java/examples directory (UNIX) of your
IDL installation.

IDL Command Execution Status Now Properly Reported

The executeIDLCommand() method of the IONCallableClient,
IONGrConnection/IONJGrConnection, and IONGrDrawable/IONJGrDrawable
classes have been fixed so that they properly return the execution status of IDL
commands. If the IDL command executes successfully, the executeIDLCommand()
method returns 0. If the IDL command does not execute successfully, the
executeIDLCommand() method returns the value of the !ERROR IDL system
variable.
What’s New in IDL 5.6 ION 1.6 Enhancements

138 Chapter 1: Overview of New Features in IDL 5.6
New IONVariable Methods Return Dimensioned Results

In prior versions of ION Java, the getByteArray(), getComplexArray(),
getDoubleArray(), getFloatArray(), getIntArray(), getShortArray(), and
getStringArray() methods of the IONVariable class were used to get arrays for the
specified variable. The result of these methods is a one-dimensional array, even if the
variable contains two or more dimensions. Using these methods, the ION Java
programmer must reformat the array into the proper number of dimensions.

The following new methods of IONVariable are provided to eliminate the need to
manually reformat the array. These methods return an array with the same number of
dimensions as the variable:

• getDimensionedByteArray()

• getDimensionedDoubleArray()

• getDimensionedFloatArray()

• getDimensionedIntArray()

• getDimensionedShortArray()

New Supported Keywords for Contours, Maps, Plots, and
Surfaces

The IONGrContour, IONGrMap, IONGrMapContinents, IONGrMapGrid,
IONGrMapImage, IONGrPlot, and IONGrSurface classes now support additional
keywords of the IDL CONTOUR, MAP_SET, MAP_CONTINENTS, MAP_GRID,
MAP_IMAGE, PLOT, and SURFACE procedures, respectively.

See the following sections in Chapter 6, “ION Java Class and Method Reference” in
the ION Java User’s Guide manual for a list of the keywords supported by each class:

• IONGrContour—Properties Supported

• IONGrMap—Properties Supported

• IONGrMapContinents—Properties Supported

• IONGrMapGrid—Properties Supported

• IONGrMapImage—Properties Supported

• IONGrPlot—Properties Supported

• IONGrSurface—Properties Supported
ION 1.6 Enhancements What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 139
Routines Obsoleted in IDL 5.6

The following routines were present in IDL Version 5.5 but became obsolete in
Version 5.6. These routines have been replaced with a new keyword to an existing
routine or by a new routine that offers enhanced functionality. These obsoleted
routines should not be used in new IDL code.

Routine Replaced By

VAX_FLOAT VAX_FLOAT keyword to OPEN

HDF_VD_GETNEXT HDF_VG_GETNEXT
What’s New in IDL 5.6 Routines Obsoleted in IDL 5.6

140 Chapter 1: Overview of New Features in IDL 5.6
Requirements for this Release

IDL 5.6 Requirements

Hardware Requirements for IDL 5.6

The following table describes the supported platforms and operating systems for IDL
5.6:

On platforms that provide 64-bit support, IDL can be run as either a 32-bit or a 64-bit
application. Both versions are installed, and the 64-bit version is the default. The
32-bit version can be run by specifying the -32 switch at the command line:

% idl -32

Platform Vendor Hardware
Operating

System
Supported
Versions

Windows Microsoft Intel x86 Windows 98

Intel x86 Windows NT 4.0, 2000, XP

Macintosh Apple PowerMac G4 Mac OS X 10.1, 10.2.x†

UNIX† Compaq Alpha 64-bit Tru64 UNIX 5.1

HP PA-RISC 32-bit HP-UX 11.0

HP PA-RISC 64-bit HP-UX 11.0

IBM RS/6000 32-bit AIX 5.1

IBM RS/6000 64-bit AIX 5.1

Intel Intel x86 Linux Red Hat 7.1††

SGI Mips 32-bit IRIX 6.5.1

SGI Mips 64-bit IRIX 6.5.1

SUN SPARC 32-bit Solaris 8

SUN SPARC 64-bit Solaris 8

Table 1-14: Hardware Requirements for IDL 5.6.
Requirements for this Release What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 141
† For UNIX (including Mac OS X), the supported versions indicate that IDL was
either built on (the lowest version listed) or tested on that version. You can install and
run IDL on other versions that are binary compatible with those listed.

†† IDL 5.6 was built on the Linux 2.4 kernel with glibc 2.2 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run IDL on your version.

Software Requirements for IDL 5.6

The following table describes the software requirements for IDL 5.6:

Platform Software Requirements

Windows Internet Explorer 5.0 or higher.

Macintosh XFree86 version 4.2 (XDarwin 1.0.6.) which is
included on the IDL 5.6 product CD.

Table 1-15: Software Requirements for IDL 5.6
What’s New in IDL 5.6 Requirements for this Release

142 Chapter 1: Overview of New Features in IDL 5.6
ION 1.6 Requirements

Hardware Requirements for ION 1.6

The following table describes the supported platforms and operating systems for ION
1.6:

† For UNIX, the supported versions indicate that ION was either built on (the lowest
version listed) or tested on that version. You can install and run ION on other versions
that are binary compatible with those listed.

†† ION 1.6 was built on the Linux 2.4 kernel with glibc 2.2 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run ION 1.6 on your version.

Web Servers

In order to use ION, you must install an HTTP Web server. ION has been tested with
the following Web server software:

• Apache Web Server version 2.0 or higher for Windows, Linux, and Solaris.

• Apache Web Server version 1.3.14 for IRIX. This version is included with the
IRIX operating system.

• Microsoft Internet Information Server (IIS) version 4 for Windows NT 4.0
Server, version 5.0 for Windows 2000 Server and version 5.1 for Windows XP
Professional.

Platform Vendor Hardware
Operating

System
Supported
Versions

Windows Microsoft Intel x86 Windows NT 4.0, 2000, XP

UNIX† Intel Intel x86 Linux Red Hat 7.1††

SGI Mips 32-bit IRIX 6.5.1

SUN SPARC 32-bit Solaris 8

Table 1-16: Hardware Requirements for IDL 5.6.
Requirements for this Release What’s New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 143
If you do not already have Web server software, the IDL 5.6 CD-ROM contains the
following Apache Web Server software:

• Windows — Version 2.0.40

• Linux — Version 2.0.40

• Solaris — Version 2.0.39

• IRIX — Version 1.3.14

Note
For more information on Apache software for your platform, see
http://www.apache.org.

Web Browsers

ION 1.6 supports the HTTP 1.0 protocol. The following are provided as examples of
popular Web browsers that support HTTP 1.0:

• Netscape Navigator versions 4.7 and 6.0.

• Microsoft Internet Explorer versions 5.5 and 6.0.

Browsers differ in their support of HTML features. As with any Web application, you
should test your ION Script or Java application using Web browsers that anyone
accessing your application is likely to be using.

Java Virtual Machines

ION 1.6 supports the following Java Virtual Machines:

• Sun JVM 1.2, 1.3 and 1.4

• Microsoft JVM 5.x

The following are provided as examples of popular Web browsers that are shipped
with the above JVMs:

• Netscape Navigator versions 4.7 and 6.0.

• Microsoft Internet Explorer versions 5.5 and 6.0.

Browsers differ in their support of features. As with any Web application, you should
test your ION Java application using Web browsers that anyone accessing your
application is likely to be using.
What’s New in IDL 5.6 Requirements for this Release

http://www.apache.org

144 Chapter 1: Overview of New Features in IDL 5.6
Windows 98 Platform Support Ending

IDL 5.6 will be the last release to support the Windows 98 platform. We recommend
that you consider upgrading to a later release of Microsoft Windows to be able to run
future versions of IDL.

RSI is committed to supporting our customers with their varied platform
requirements while maintaining financially sound business practices. Our goal
is to communicate platform support plans in a timely fashion in order to allow
you ample time to make well informed platform decisions.
Windows 98 Platform Support Ending What’s New in IDL 5.6

Chapter 2:

New IDL Objects and
Methods
This chapter describes new objects and new methods to existing objects introduced in IDL 5.6
IDLffXMLSAX object 146 IDLgrContour object 185
What’s New in IDL 5.6 145

146 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX object

An IDLffXMLSAX object uses an XML SAX level 2 parser. The XML parser allows
you to read an XML file and store arbitrary data from the file in IDL variables. The
parser object’s methods are callbacks. These methods are called automatically when
the parser encounters different types of XML elements or attributes.

Note
To use the XML parser, you must write a subclass of this object class, overriding the
object methods as necessary to process the data in a specific XML file or files. See
Chapter 22, “Using the XML Parser Object Class” in the Building IDL Applications
manual for further information and examples.

The IDLffXMLSAX object encapsulates the Xerces validating XML parser; see
http://xml.apache.org for details.

Superclasses

This class has no superclass.

Subclasses

You must write a subclass of this object, overriding object methods as necessary to
retrieve information from the XML file.

Creation

See “IDLffXMLSAX::Init” on page 167

Methods

Intrinsic Methods

This class has the following methods:

• IDLffXMLSAX::AttributeDecl

• IDLffXMLSAX::Characters

• IDLffXMLSAX::Cleanup

• IDLffXMLSAX::Comment
IDLffXMLSAX object What’s New in IDL 5.6

http://xml.apache.org

Chapter 2: New IDL Objects and Methods 147
• IDLffXMLSAX::ElementDecl

• IDLffXMLSAX::EndCDATA

• IDLffXMLSAX::EndDocument

• IDLffXMLSAX::EndDTD

• IDLffXMLSAX::EndElement

• IDLffXMLSAX::EndEntity

• IDLffXMLSAX::EndPrefixMapping

• IDLffXMLSAX::Error

• IDLffXMLSAX::ExternalEntityDecl

• IDLffXMLSAX::FatalError

• IDLffXMLSAX::GetProperty

• IDLffXMLSAX::IgnorableWhitespace

• IDLffXMLSAX::Init

• IDLffXMLSAX::InternalEntityDecl

• IDLffXMLSAX::NotationDecl

• IDLffXMLSAX::ParseFile

• IDLffXMLSAX::ProcessingInstruction

• IDLffXMLSAX::SetProperty

• IDLffXMLSAX::SkippedEntity

• IDLffXMLSAX::StartCDATA

• IDLffXMLSAX::StartDocument

• IDLffXMLSAX::StartDTD

• IDLffXMLSAX::StartElement

• IDLffXMLSAX::StartEntity

• IDLffXMLSAX::StartPrefixMapping

• IDLffXMLSAX::StopParsing

• IDLffXMLSAX::UnparsedEntityDecl

• IDLffXMLSAX::Warning
What’s New in IDL 5.6 IDLffXMLSAX object

148 Chapter 2: New IDL Objects and Methods
Version History

Introduced: 5.6
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 149
IDLffXMLSAX::AttributeDecl

The IDLffXMLSAX::AttributeDecl procedure method is called when the parser
detects an <!ATTLIST ...> declaration in a DTD. This method is called once for
each attribute declared by the tag.

Syntax

Obj -> [IDLffXMLSAX::]AttributeDecl, eName, aName, Type, Mode, Value

Arguments

eName

A named variable that will contain the name of the element for which the attribute is
being declared.

aName

A named variable that will contain the name of the attribute being declared.

Type

A named variable that will contain a string that specifies the type of attribute being
defined. Possible values are:

• 'CDATA'

• 'ID'

• 'IDREF'

• 'IDREFS'

• 'NMTOKEN'

• 'NMTOKENS'

• 'ENTITY'

• 'ENTITIES'

or two types of enumerated values. Enumerated values are encoded with
parenthesized strings such as (a|b|c) to indicate that strings a, b, or c are
permissible. If the string is an enumeration of notation names, the string
"NOTATION " (note the space after the second “N”) precedes the parenthesized
string.
What’s New in IDL 5.6 IDLffXMLSAX object

150 Chapter 2: New IDL Objects and Methods
Mode

A named variable that will contain a string that specifies restrictions on the value of
the attribute. Possible values are:

• '#IMPLIED' - the application determines the value

• '#REQUIRED' - the value must be given; defaulting is not permitted

• '#FIXED' - only one value is permitted

• '' - a null string (the value specified by the Value argument is used as the
default)

Value

A named variable that will contain the default value for the attribute. If Value
contains a null string, no default value was specified.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 151
IDLffXMLSAX::Characters

The IDLffXMLSAX::Characters procedure method is called when the parser detects
text in the parsed document.

Syntax

Obj -> [IDLffXMLSAX::]Characters, Chars

Arguments

Chars

A named variable that will contain the text detected by the parser.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

152 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::Cleanup

The IDLffXMLSAX::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. In most cases, you cannot call the Cleanup method
directly. However, one exception to this rule does exist. If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffXMLSAX::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 153
IDLffXMLSAX::Comment

The IDLffXMLSAX::Comment procedure method is called when the parser detects a
comment section of the form <!-- ... --> .

Syntax

Obj -> [IDLffXMLSAX::]Comment, Comment

Arguments

Comment

A named variable that will contain the text within the detected comment section,
without the delimiting characters (“<!--” and “-->”).

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

154 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::ElementDecl

The IDLffXMLSAX::ElementDecl procedure method is called when the parser
detects an <!ELEMENT ...> declaration in the DTD.

Syntax

Obj -> [IDLffXMLSAX::]ElementDecl, Name, Model

Arguments

Name

A named variable that will contain the name of the element.

Model

A named variable that will contain the content model (sometimes called the content
specification) for the element, with all whitespace removed.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 155
IDLffXMLSAX::EndCDATA

The IDLffXMLSAX::EndCDATA procedure method is called when the parser
detects the end of a <[CDATA[...]]> text section.

Syntax

Obj -> [IDLffXMLSAX::]EndCDATA

Arguments

None.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

156 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::EndDocument

The IDLffXMLSAX::EndDocument procedure method is called when the parser
detects the end of the XML document.

Syntax

Obj -> [IDLffXMLSAX::]EndDocument

Arguments

None.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 157
IDLffXMLSAX::EndDTD

The IDLffXMLSAX::EndDTD procedure method is called when the parser detects
the end of a Document Type Definition (DTD).

Syntax

Obj -> [IDLffXMLSAX::]EndDTD

Arguments

None.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

158 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::EndElement

The IDLffXMLSAX::EndElement procedure method is called when the parser
detects the end of an element.

Syntax

Obj -> [IDLffXMLSAX::]EndElement, URI, Local, qName

Arguments

URI

A named variable that will contain the namespace URI with which the element is
associated, if any.

Note
A URI (or Uniform Resource Identifier) refers to the generic set of all names and
addresses which are short strings which refer to objects.

Local

A named variable that will contain the element name with any prefix removed, if the
element is associated with a namespace URI. If the element is not associated with a
namespace URI, this variable will contain an empty string.

qName

A named variable that will contain the element name found in the XML file.

Note
If the element is associated with a namespace URI, this variable may contain an
empty string.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 159
IDLffXMLSAX::EndEntity

The IDLffXMLSAX::EndEntity procedure method is called when the parser detects
the end of an internal or external entity expansion.

Syntax

Obj -> [IDLffXMLSAX::]EndEntity, Name

Arguments

Name

A named variable that will contain the name of the entity.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

160 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::EndPrefixMapping

The IDLffXMLSAX::EndPrefixMapping procedure method is called when a
previously declared prefix mapping goes out of scope.

Syntax

Obj -> [IDLffXMLSAX::]EndPrefixMapping, Prefix

Arguments

Prefix

A named variable that will contain the namespace prefix that is going out of scope.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 161
IDLffXMLSAX::Error

The IDLffXMLSAX::Error procedure method is called when the parser detects an
error that is not expected to be fatal. This method prints an IDL error string to the IDL
output log and allows the parser to continue processing.

For example, a violation of XML validity constraints is generally a non-fatal error.

Note
This method will cause error messages to be printed to the IDL output log. If you
would like your application to hide error messages from the user (or display them in
some other fashion), override this method in your subclass of the IDLffXMLSAX
object class. If you do override this method, the error message will not be printed to
the output log unless you explicitly call the superclass method.

Syntax

Obj -> [IDLffXMLSAX::]Error, SystemID, LineNumber, ColumnNumber, Message

Arguments

SystemID

A named variable that will contain the URI of the associated text.

LineNumber

A named variable that will contain the line number that contains the error.

ColumnNumber

A named variable that will contain the column number that contains the error.

Message

A named variable that will contain the error message sent to the IDL output log.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

162 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::ExternalEntityDecl

The IDLffXMLSAX::ExternalEntityDecl procedure method is called when the parser
detects an <!ENTITY ...> declarations in the DTD for a parsed external entity.

Syntax

Obj -> [IDLffXMLSAX::]ExternalEntityDecl, Name, PublicID, SystemID

Arguments

Name

A named variable that will contain the entity name.

PublicID

A named variable that will contain the Public ID for the entity.

Note
If this value is not specified in the entity declaration, this variable will contain an
empty string.

SystemID

A named variable that will contain the System ID for the entity, provided as an
absolute URI.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 163
IDLffXMLSAX::FatalError

The IDLffXMLSAX::FatalError procedure method is called when the parser detects
a fatal error. When called, parsing will normally stop, but may sometimes continue
long enough to report further errors. This method prints an IDL error string to the
IDL output log.

Syntax

Obj -> [IDLffXMLSAX::]FatalError, SystemID, LineNumber, ColumnNumber,
Message

Arguments

SystemID

A named variable that will contain the URI of the associated text.

LineNumber

A named variable that will contain the line number that contains the error.

ColumnNumber

A named variable that will contain the column number that contains the error.

Message

A named variable that will contain the error message sent to the IDL output log.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

164 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::GetProperty

The IDLffXMLSAX::GetProperty procedure method is used to get the values of
various properties of the parser.

Syntax

Obj -> [IDLffXMLSAX::]GetProperty [, FILENAME=variable]
[, PARSER_LOCATION=variable] [, PARSER_PUBLICID=variable]
[, PARSER_URI=variable]

Arguments

None.

Keywords

Any keyword to the IDLffXMLSAX::Init followed by Get can be retrieved using
IDLffXMLSAX::GetProperty. To retrieve a property, set the associated keyword
equal to a named variable that will contain the property value.

In addition, the following keywords are available:

Note
These properties are only available during a parse operation.

FILENAME

Set this keyword equal to a named variable that will contain the filename of the XML
file being parsed.

PARSER_LOCATION

Set this keyword equal to a named variable that will contain the approximate location
of the parser within the entity being parsed. The value is returned as a two-element
array, with the first element set to the line number and the second element set the
column number.

PARSER_PUBLICID

Set this keyword equal to a named variable that will contain the Public ID for the
entity being parsed, if it is available. If the Public ID is not available, an empty string
is returned.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 165
PARSER_URI

Set this keyword equal to a named variable that will contain the base URI (System
ID) for the entity being parsed, if it is available. If the value is available, it is always
an absolute URI. If the System ID is not available, an empty string is returned.

Note
Use this value to identify the document or external entity in diagnostics, or to
resolve relative URIs.
What’s New in IDL 5.6 IDLffXMLSAX object

166 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::IgnorableWhitespace

The IDLffXMLSAX::IgnorableWhitespace procedure method is called when the
parser detects whitespace that separates elements in an element content model.

Syntax

Obj -> [IDLffXMLSAX::]IgnorableWhitespace, Chars

Arguments

Chars

A named variable that will contain the whitespace detected by the parser. Whitespace
can consist of spaces, tabs, or newline characters in any combination.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 167
IDLffXMLSAX::Init

The IDLffXMLSAX::Init function method initializes an XML parser object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. In most cases, you cannot call the Init method directly.
However, one exception to this rule does exist. If you write your own subclass of
this class, you can call the Init method from within the Init method of the subclass.

Syntax

Obj = OBJ_NEW('IDLffXMLSAX' [, /NAMESPACE_PREFIXES]
[, SCHEMA_CHECKING=[0,1,2] [, VALIDATION_MODE=[0,1,2]])

or

Result = Obj -> [IDLffXMLSAX::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Return Value

Returns the object reference to this newly-created IDLffXMLSAX object.

Arguments

None.

Keywords

Properties you can retrieve via the IDLffXMLSAX::GetProperty are indicated by the
word Get following the keyword. Properties you can set via the
IDLffXMLSAX::SetProperty are indicated by the word Set following the keyword.

NAMESPACE_PREFIXES (Get, Set)

Set this keyword to indicate that namespace prefixes are enabled. By default,
namespace prefixes are disabled.
What’s New in IDL 5.6 IDLffXMLSAX object

168 Chapter 2: New IDL Objects and Methods
SCHEMA_CHECKING (Get, Set)

XML Schemas describe the structure and allowed contents of an XML document.
Schemas are more robust than, and are envisioned as a replacement for, DTDs. Set
this keyword to an integer value to indicate the type of validation the parser should
perform. By default, the parser will validate the parsed XML file against the specified
schema, if one is provided; if no schema is provided, no validation will occur.
Possible values are:

VALIDATION_MODE (Get, Set)

XML Document Type Definitions (DTDs) describe the structure and allowed contents
of an XML document. Set this keyword to indicate the type of XML validation that
the parser should perform. By default, the parser will validate the parsed XML file
against the specified DTD, if one is provided; if no DTD is provided, no validation
will occur. Possible values are:

Value Description

0 No validation.

1 Validate only if a schema is provided (the default).

2 Perform full schema constraint checking, if a schema is
provided. This feature checks the schema grammar itself for
additional errors. It does not affect the level of checking
performed on document instances that use schema grammars.

Table 2-1: SCHEMA_CHECKING Values

Value Description

0 No validation.

1 Validate only if a DTD is provided (the default).

2 Always perform validation. If this option is in force and no
DTD is provided, every XML element in the document will
generate an error.

Table 2-2: VALIDATION_MODE Values
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 169
IDLffXMLSAX::InternalEntityDecl

The IDLffXMLSAX::InternalEntityDecl procedure method is called when the parser
detects an <!ENTITY ...> declaration in a DTD for (parsed) internal entities. The
entity can be either a general entity or a parameter entity.

Syntax

Obj -> [IDLffXMLSAX::]InternalEntityDecl, Name, Value

Arguments

Name

A named variable that will contain the entity name. Names that start with the “%”
character are parameter entities; all others are general entities.

Value

A named variable that will contain the entity value. The entity value can contain
arbitrary XML content, which will be reparsed when the entity is expanded.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

170 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::NotationDecl

The IDLffXMLSAX::NotationDecl procedure method is called when the parser
detects a <!NOTATION ...> declaration in a DTD.

Syntax

Obj -> [IDLffXMLSAX::]NotationDecl, Name, PublicID, SystemID

Arguments

Name

A named variable that will contain the notation name.

PublicID

A named variable that will contain the Public ID for the notation.

Note
If this value is not specified in the notation declaration, this variable will contain an
empty string.

SystemID

A named variable that will contain the System ID for the notation, provided as an
absolute URI.

Note
If this value is not specified in the notation declaration, this variable will contain an
empty string.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 171
IDLffXMLSAX::ParseFile

The IDLffXMLSAX::ParseFile procedure method parses the specified XML file.
During the parsing operation, different object methods are called as different items
within the XML file are detected. When this method returns, the parse operation is
complete.

Syntax

Obj -> [IDLffXMLSAX::]ParseFile, Filename

Arguments

Filename

A string containing the full path name of the XML file to parse.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

172 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::ProcessingInstruction

The IDLffXMLSAX::ProcessingInstruction procedure method is called when the
parser detects a processing instruction.

Syntax

Obj -> [IDLffXMLSAX::]ProcessingInstruction, Target, Data

Arguments

Target

A named variable that will contain a string specifying the target, which is the
application that should process the instruction.

Data

A named variable that will contain a string specifying the data to be passed to the
application specified by Target.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 173
IDLffXMLSAX::SetProperty

The IDLffXMLSAX::SetProperty procedure method is used to set the values of
various properties of the parser.

Syntax

Obj -> [IDLffXMLSAX::]SetProperty [, /NAMESPACE_PREFIXES]
[, SCHEMA_CHECKING=[0,1,2] [, VALIDATION_MODE=[0,1,2]]

Arguments

None.

Keywords

Any keyword to the IDLffXMLSAX::Init followed by Set can be set using
IDLffXMLSAX::SetProperty.
What’s New in IDL 5.6 IDLffXMLSAX object

174 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::SkippedEntity

The IDLffXMLSAX::SkippedEntity procedure method is called when the parser
skips an entity and validation is not being performed. This method is rarely called by
SAX parsers.

Syntax

Obj -> [IDLffXMLSAX::]SkippedEntity, Name

Arguments

Name

A named variable that will contain the name of the entity that was skipped.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 175
IDLffXMLSAX::StartCDATA

The IDLffXMLSAX::StartCDATA procedure method is called when the parser
detects the beginning of a <[CDATA[...]]> text section.

Syntax

Obj -> [IDLffXMLSAX::]StartCDATA

Arguments

None.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

176 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::StartDocument

The IDLffXMLSAX::StartDocument procedure method is called when the parser
begins processing a document, and before any data is processed.

Syntax

Obj -> [IDLffXMLSAX::]StartDocument

Arguments

None.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 177
IDLffXMLSAX::StartDTD

The IDLffXMLSAX::StartDTD procedure method is called when the parser detects
the beginning of a Document Type Definition (DTD).

Syntax

Obj -> [IDLffXMLSAX::]StartDTD, Name, PublicID, SystemID

Arguments

Name

A named variable that will contain the declared name of the root element for the
document.

PublicID

A named variable that will contain the normalized version of the Public ID (a URI)
declared for the external subset, or an empty string if no external subset was declared.
Normalization involves removal of unnecessary “.” and “..” segments from the
URI.

SystemID

A named variable that will contain the System ID (a URI) of the external subset, or an
empty string if no external subset was declared.

Note
This URI has not been resolved into an absolute URI.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

178 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::StartElement

The IDLffXMLSAX::StartElement procedure method is called when the parser
detects the beginning of an element.

Syntax

Obj -> [IDLffXMLSAX::]StartElement, URI, Local, qName [, attName, attValue]

Arguments

URI

A named variable that will contain the namespace URI with which the element is
associated, if any.

Local

A named variable that will contain the element name with any prefix removed, if the
element is associated with a namespace URI. If the element is not associated with a
namespace URI, this variable will contain an empty string.

qName

A named variable that will contain the element name found in the XML file.

Note
If the element is associated with a namespace URI, this variable may contain an
empty string.

attrName

A named variable that will contain a string array, which is the names of the attributes
associated with the element, if any.

attrValue

A named variable that will contain a string array, which is the values of each attribute
associated with the element, if any. The returned array will have the same number of
elements as the array returned in the attrName keyword variable.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 179
Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

180 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::StartEntity

The IDLffXMLSAX::StartEntity procedure method is called when the parser detects
the start of an internal or external entity expansion.

Syntax

Obj -> [IDLffXMLSAX::]StartEntity, Name

Arguments

Name

A named variable that will contain the name of the entity.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 181
IDLffXMLSAX::StartPrefixMapping

The IDLffXMLSAX::StartPrefixMapping procedure method is called when the
parser detects the beginning of a namespace declaration.

Syntax

Obj -> [IDLffXMLSAX::]StartPrefixmapping, Prefix, URI

Arguments

Prefix

A named variable that will contain the prefix, which is being mapped. If the variable
specified by Prefix contains an empty string, the mapping is for the default element
namespace.

URI

A named variable that will contain the URI of the prefix namespace.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

182 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::StopParsing

Call the IDLffXMLSAX::StopParsing procedure method during a parse operation to
halt the operation and cause the ParseFile method to return. This may be useful when
parsing large XML files and the desired information is known to have been returned.

Syntax

Obj -> [IDLffXMLSAX::]StopParsing

Arguments

None.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 183
IDLffXMLSAX::UnparsedEntityDecl

The IDLffXMLSAX::UnparsedEntityDecl procedure method is called when the
parser detects an <!ENTITY ...> declaration that includes the NDATA keyword,
indicating that the entity is not meant to be parsed. The value of the NDATA keyword
generally specifies the name of a notation, which in turn specifies the type of data.

Syntax

Obj -> [IDLffXMLSAX::]UnparsedEntityDecl, Name, PublicID, SystemID,
Notation

Arguments

Name

A named variable that will contain the name of the unparsed entity.

PublicID

A named variable that will contain the Public ID of the notation specified by the
entity’s NDATA keyword, or an empty string if no Public ID was declared.

SystemID

A named variable that will contain the System ID of the notation specified by the
entity’s NDATA keyword. This value is normally an absolute URI.

Notation

A named variable containing the name of the notation specified by the entity’s
NDATA keyword.

Keywords

None.
What’s New in IDL 5.6 IDLffXMLSAX object

184 Chapter 2: New IDL Objects and Methods
IDLffXMLSAX::Warning

The IDLffXMLSAX::Warning procedure method is called when the parser detects a
problem during processing. This method prints an IDL error string to the IDL output
log and allows the parser to continue processing.

Note
This method will cause error messages to be printed to the IDL output log. If you
would like your application to hide error messages from the user (or display them in
some other fashion), override this method in your subclass of the IDLffXMLSAX
object class. If you do override this method, the error message will not be printed to
the output log unless you explicitly call the superclass method.

Syntax

Obj -> [IDLffXMLSAX::]Warning, SystemID, LineNumber, ColumnNumber,
Message

Arguments

SystemID

A named variable that will contain the URI of the text that generated the error.

LineNumber

A named variable that contains the line number that contains the error.

ColumnNumber

A named variable that contains the column number that contains the error.

Message

A named variable that contains the error message.

Keywords

None.
IDLffXMLSAX object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 185
IDLgrContour object

The following methods have been added in IDL 5.6:

• IDLgrContour::AdjustLabelOffsets

• IDLgrContour::GetLabelInfo
What’s New in IDL 5.6 IDLgrContour object

186 Chapter 2: New IDL Objects and Methods
IDLgrContour::AdjustLabelOffsets

The IDLgrContour::AdjustLabelOffsets procedure method adjusts the offsets at
which contour labels are positioned.

Syntax

Obj->[IDLgrContour::]AdjustLabelOffsets, LevelIndex, LabelOffsets

Arguments

LevelIndex

The index of the contour level for which the label offsets are being adjusted. This
value must be greater than or equal to zero and less than the number of levels (refer to
the N_LEVELS keyword in the IDLgrContour::Init method).

LabelOffsets

A scalar or vector of floating point offsets, [t0, t1, …], that indicate the parametric
offsets along the length of each contour line at which each label is to be positioned.
The number of elements in this vector must exactly match the number of elements
returned in the LABEL_OFFSETS vector retrieved via the
IDLgrContour::GetLabelInfo method for the same level.

Keywords

None.
IDLgrContour object What’s New in IDL 5.6

Chapter 2: New IDL Objects and Methods 187
IDLgrContour::GetLabelInfo

The IDLgrContour::GetLabelInfo procedure method retrieves information about the
labels for a contour. The returned information is only valid until the next time the
C_LABEL_INTERVAL or C_LABEL_OBJECTS property is modified using the
IDLgrContour::SetProperty method, or the offsets are adjusted using the
IDLgrContour::AdjustLabelOffsets method.

Syntax

Obj->[IDLgrContour::]GetLabelInfo, Destination, LevelIndex
[, LABEL_OFFSETS=variable] [, LABEL_POLYS=variable]
[, LABEL_OBJECTS=variable]

Arguments

Destination

A reference to a destination object (such as an IDLgrWindow or IDLgrBuffer object).
The contour label information will be computed so that the requested font size is
satisfied for this destination device.

LevelIndex

The index of the contour level for which the label information is being requested.
This value must be greater than or equal to zero and less than the number of levels
(refer to the N_LEVELS keyword in the IDLgrContour::Init method).

Keywords

LABEL_OFFSETS

Set this keyword to a named variable that upon return will contain a vector of floating
point offsets, [t0, t1, …], that indicate the parametric offsets along the length of each
contour line at which the contour labels are positioned.
What’s New in IDL 5.6 IDLgrContour object

188 Chapter 2: New IDL Objects and Methods
LABEL_POLYLINES

Set this keyword to a named variable that upon return will contain a vector of contour
polyline indices, [P0, P1, …], that indicate which contour lines are labeled. Pi
corresponds to the ith contour line. Note that if a given contour line has more than
one label along its perimeter, then the corresponding polyline index may appear more
than once in the LABEL_POLYLINES vector.

LABEL_OBJECTS

Set this keyword to a named variable that upon return will contain a vector of objects
that represent the labels for each contour label.
IDLgrContour object What’s New in IDL 5.6

Chapter 3:

New IDL Routines
This chapter describes routines introduced in IDL version 5.6
What’s New in IDL 5.6 189

190 Chapter 3: New IDL Routines
COPY_LUN

The COPY_LUN procedure copies data between two open files. It allows you to
transfer a known amount of data from one file to another without needing to have the
data available in an IDL variable. COPY_LUN can copy a fixed amount of data,
specified in bytes or lines of text, or it can copy from the current position of the file
pointer in the input file to the end of that file.

COPY_LUN copies data between open files. To copy entire files based on their
names, see the FILE_COPY procedure. To read and discard a known amount of data
from a file, see the SKIP_LUN.

Syntax

COPY_LUN, FromUnit, ToUnit [, Num] [, /EOF] [, /LINES]
[, /TRANSFER_COUNT]

Arguments

FromUnit

An integer that specifies the file unit for the file from which data is to be taken (the
source file). Data is copied from FromUnit, starting at the current position of the file
pointer. The file pointer is advanced as data is read. The file specified by FromUnit
must be open, and must not have been opened with the RAWIO keyword to OPEN.

ToUnit

An integer that specifies the file unit for the file to which data is to be written (the
destination file). Data is written to ToUnit, starting at the current position of the file
pointer. The file pointer is advanced as data is written. The file specified by ToUnit
must be open for output (OPENW or OPENU), and must not have been opened with
the RAWIO keyword to OPEN.

Num

The amount of data to transfer between the two files. This value is specified in bytes,
unless the LINES keyword is specified, in which case it is taken to be the number of
text lines. If Num is not specified, COPY_LUN acts as if the EOF keyword has been
set, and copies all data in FromUnit (the source file) from the current position of the
file pointer to the end of the file.
COPY_LUN What’s New in IDL 5.6

Chapter 3: New IDL Routines 191
If Num is specified and the source file comes to end of file before the specified
amount of data is transferred, COPY_LUN issues an end-of-file error. The EOF
keyword alters this behavior.

Keywords

EOF

Set this keyword to ignore the value given by Num (if present) and instead transfer all
data between the current position of the file pointer in FromUnit and the end of the
file.

Note
If EOF is set, no end-of-file error is issued even if the amount of data transferred
does not match the amount specified by Num. The TRANSFER_COUNT keyword
can be used with EOF to determine how much data was transferred.

LINES

Set this keyword to indicate that the Num argument specifies the number of lines of
text to be transferred. By default, the Num argument specifies the number of bytes of
data to transfer.

TRANSFER_COUNT

Set this keyword equal to a named variable that will contain the amount of data
transferred. If LINES is specified, this value is the number of lines of text. Otherwise,
it is the number of bytes. TRANSFER_COUNT is primarily useful when the Num
argument is not specified or the EOF keyword is present. If Num is specified and the
EOF keyword is not present, TRANSFER_COUNT will be the same as the value
specified for Num.

Examples

Copy the next 100000 bytes of data between two files:

COPY_LUN, FromUnit, ToUnit, 100000

Copy the next 8 lines of text between two files:

COPY_LUN, FromUnit, ToUnit, 8, /LINES
What’s New in IDL 5.6 COPY_LUN

192 Chapter 3: New IDL Routines
Copy the remainder of the data in one file to another, and use the
TRANSFER_COUNT keyword to determine how much data was copied:

COPY_LUN, FromUnit, ToUnit, /EOF, TRANSFER_COUNT=n

Copy the remaining lines of text from one file to another, and use the
TRANSFER_COUNT keyword to determine how many lines were transferred.

COPY_LUN, FromUnit, ToUnit, /EOF, /LINES, TRANSFER_COUNT=n

Version History

Introduced: 5.6

See Also

CLOSE, EOF, FILE_COPY, FILE_LINK, FILE_MOVE, OPEN, READ/READF,
SKIP_LUN, WRITEU
COPY_LUN What’s New in IDL 5.6

Chapter 3: New IDL Routines 193
DIAG_MATRIX

The DIAG_MATRIX function constructs a diagonal matrix from an input vector, or if
given a matrix, then DIAG_MATRIX will extract a diagonal vector.

Syntax

Result = DIAG_MATRIX(A [, Diag])

Return Value

• If given an input vector with n values, the result is an n-by-n array of the same
type. The DIAG_MATRIX function may also be used to construct subdiagonal
or superdiagonal arrays.

• If given an input n-by-m array, the result is a vector with MIN(n,m) elements
containing the diagonal elements. The DIAG_MATRIX function may also be
used to extract subdiagonals or superdiagonals.

Arguments

A

Either an n-element input vector to convert to a diagonal matrix, or a n-by-m input
array to extract a diagonal. A may be any numeric type.

Diag

An optional argument that specifies the subdiagonal (Diag < 0) or superdiagonal
(Diag > 0) to fill or extract. The default is Diag=0 which puts or extracts the values
along the diagonal. If A is a vector with the m elements, then the result is an n-by-n
array, where n = m + ABS(Diag). If A is an array, then the result is a vector whose
length depends upon the number of elements remaining along the subdiagonal or
superdiagonal.
What’s New in IDL 5.6 DIAG_MATRIX

194 Chapter 3: New IDL Routines
Tip
The Diag argument may be used to easily construct tridiagonal arrays. For example,
the expression,

DIAG_MATRIX(VL,-1) + DIAG_MATRIX(V) + DIAG_MATRIX(VU,1)

will create an n-by-n array, where VL is an (n - 1)-element vector containing the
subdiagonal values, V is an n-element vector containing the diagonal values, and
VU is an (n - 1)-element vector containing the superdiagonal values.

Keywords

None.

Example

Create a tridiagonal matrix and extract the diagonal using the following program:

PRO ExDiagMatrix
; Convert three input vectors to a tridiagonal matrix:
diag = [1, -2, 3, -4]
sub = [5, 10, 15]
super = [3, 6, 9]
array = DIAG_MATRIX(diag) + $
DIAG_MATRIX(super, 1) + DIAG_MATRIX(sub, -1)
PRINT, 'DIAG_MATRIX array:'
PRINT, array

; Extract the diagonal:
PRINT, 'DIAG_MATRIX diagonal:'
PRINT, DIAG_MATRIX(array)
END

When this program is compiled and run, IDL prints:

DIAG_MATRIX array:
1 3 0 0
5 -2 6 0
0 10 3 9
0 0 15 -4
DIAG_MATRIX diagonal:
1 -2 3 -4
DIAG_MATRIX What’s New in IDL 5.6

Chapter 3: New IDL Routines 195
Version History

Introduced: 5.6

See Also

IDENTITY, MATRIX_MULTIPLY, MATRIX_POWER, “Multiplying Arrays” in
Chapter 22 of the Using IDL manual.
What’s New in IDL 5.6 DIAG_MATRIX

196 Chapter 3: New IDL Routines
FILE_COPY

The FILE_COPY procedure copies files, or directories of files, to a new location. The
copies retain the permission settings of the original files, and belong to the user that
performed the copy. See “Rules Used By FILE_COPY” on page 198 for additional
information.

FILE_COPY copies files based on their names. To copy data between open files, see
the COPY_LUN procedure.

Syntax

FILE_COPY, SourcePath, DestPath [, /ALLOW_SAME] [, /NOEXPAND_PATH]
[, /OVERWRITE] [, /RECURSIVE] [, /REQUIRE_DIRECTORY] [, /VERBOSE]

UNIX-Only Keywords: [, /COPY_NAMED_PIPE] [, /COPY_SYMLINK]
[, /FORCE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
copied.

Note
If SourcePath contains a directory, the RECURSIVE keyword must be set.

DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories specified by SourcePath are to be copied. If more than one file is
to be copied to a given destination, that destination must exist and be a directory.

Keywords

ALLOW_SAME

Attempting to copy a file on top of itself by specifying the same file for SourcePath
and DestPath is usually considered to be an error. If the ALLOW_SAME keyword is
set, no copying is done and the operation is considered successful.
FILE_COPY What’s New in IDL 5.6

Chapter 3: New IDL Routines 197
COPY_NAMED_PIPE (UNIX Only)

When FILE_COPY encounters a UNIX named pipe (also called a fifo) in
SourcePath, it usually opens it as a regular file and attempts to copy data from it to
the destination file. If COPY_NAMED_PIPE is set, FILE_COPY will instead
replicate the pipe, creating a new named pipe at the destination using the system
mkfifo() function.

COPY_SYMLINK (UNIX Only)

When FILE_COPY encounters a UNIX symbolic link in SourcePath, it attempts to
copy the file or directory pointed to by the link. If COPY_SYMLINK is set,
FILE_COPY will instead create a symbolic link at the destination with the same
name as the source symbolic link, and pointing to the same path as the source.

FORCE (UNIX Only)

Even if the OVERWRITE keyword is set, FILE_COPY does not overwrite files that
have their file permissions set to prevent it. If the FORCE keyword is set, such files
are quietly removed to make way for the overwrite operation to succeed.

Note
FORCE does not imply OVERWRITE; both must be specified to overwrite a
protected file.

NOEXPAND_PATH

Set this keyword to cause FILE_COPY to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

OVERWRITE

Set this keyword to allow FILE_COPY to overwrite an existing file.

RECURSIVE

Set this keyword to cause directories specified by SourcePath to be copied to
DestPath recursively, preserving the hierarchy and names of the files from the source.
If SourcePath includes one or more directories, the RECURSIVE keyword must be
set.
What’s New in IDL 5.6 FILE_COPY

198 Chapter 3: New IDL Routines
Note
On a UNIX system, when performing a recursive copy on a directory hierarchy that
includes files that are links to other files, the destination files will be copies, not
links. Setting the COPY_SYMLINK keyword will cause files that are symbolic
links to be copied as symbolic links, but FILE_COPY does not include a similar
facility for copying hard links. See the description of the FILE_LINK for more
information on UNIX file links.

REQUIRE_DIRECTORY

Set this keyword to cause FILE_COPY to require that DestPath exist and be a
directory.

VERBOSE

Set this keyword to cause FILE_COPY to issue an informative message for every file
copy operation it carries out.

Rules Used By FILE_COPY

The following rules govern how FILE_COPY operates:

• The arguments to FILE_COPY can be scalar or array. If both arguments are
arrays, the arrays must contain the same number of elements; in this case, the
files are copied pairwise, with each file from SourcePath being copied to the
corresponding file in the DestPath. If SourcePath is an array and DestPath is a
scalar, all files in SourcePath are copied to the single location given by
DestPath, which must exist and be a directory.

• Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for a
given element of SourcePath are copied to the location specified by the
corresponding element of DestPath. If multiple files are copied to a single
element of DestPath, that element must exist and be a directory.

• If a file specified in DestPath does not exist, the corresponding file from
SourcePath is copied using the name specified by DestPath. Any parent
directories to the file specified by DestPath must already exist.

• If DestPath names an existing regular file, FILE_COPY will not overwrite it,
unless the OVERWRITE keyword is specified.
FILE_COPY What’s New in IDL 5.6

Chapter 3: New IDL Routines 199
• If DestPath names an existing directory and SourcePath names a regular (non-
directory) file, then FILE_COPY creates a file with the same name as the file
given by SourcePath within the DestPath directory.

• If DestPath specifies an existing directory and SourcePath also names a
directory, and the RECURSIVE keyword is set, FILE_COPY checks for the
existence of a subdirectory of DestPath with the same name as the source
directory. If this subdirectory does not exist, it is created using the same
permissions as the directory being copied. Then, all the files and directories
underneath the source directory are copied to this subdirectory. FILE_COPY
will refuse to overwrite existing files within the destination subdirectory unless
the OVERWRITE keyword is in effect.

Examples

Make a backup copy of a file named myroutine.pro in the current working
directory:

FILE_COPY, 'myroutine.pro', 'myroutine.pro.backup'

Create a subdirectory named BACKUP in the current working directory and copy all
.pro files, makefile, and mydata.dat into it:

FILE_MKDIR, 'BACKUP'
FILE_COPY, ['*.pro', 'makefile', 'mydata.dat'], 'BACKUP'

Version History

Introduced: 5.6

See Also

COPY_LUN, FILE_LINK, FILE_MOVE
What’s New in IDL 5.6 FILE_COPY

200 Chapter 3: New IDL Routines
FILE_LINES

The FILE_LINES function reports the number of lines of text contained within the
specified file or files.

Text files containing data are very common. To read such a file usually requires
knowing how many lines of text it contains. Under UNIX and Windows, there is no
special text file type, and it is not possible to tell how many lines are contained in a
file from basic file attributes. Rather, lines are encoded using a special character or
characters at the end of each line:

• UNIX operating systems use an ASCII linefeed (LF) character at the end of
each line.

• Older Macintosh systems (prior to the UNIX-based Mac OS X) use a carriage
return (CR).

• Microsoft Windows uses a two character CR/LF sequence.

The only way to determine the number of lines of text contained within a file is to
open it and count lines while reading and skipping over them until the end of the file
is encountered. Since files are often copied from one type of system to another
without going through the proper line termination conversion, portable software
needs to be able to recognize any of these terminations, regardless of the system
being used. FILE_LINES performs this operation in an efficient and portable manner,
handling all three of the line termination conventions listed above.

This routine works by opening the file and reading the data contained within. It is
therefore only suitable for regular disk files, and only when access to that file is fast
enough to justify reading it more than once. For other types of files, other approaches
are necessary, such as:

• Reading the file once, using an adaptive (expandable) data structure, counting
the number of lines as they are input, and growing the data structure as
necessary.

• Building a header into your file format that includes the necessary information,
or somehow embedding the number of lines into the file data.

• Maintaining file information in a separate file associated with each file.

• Using a self describing data format that avoids these issues.

This routine assumes that the specified file or files contain only lines of text. It is
unable to correctly count lines in files that contain binary data, or which do not use
the standard line termination characters. Results are undefined for such files.
FILE_LINES What’s New in IDL 5.6

Chapter 3: New IDL Routines 201
Note that FILE_LINES is equivalent to the following IDL code:

FUNCTION file_lines, filename
OPENR, unit, filename, /GET_LUN
str = ''
count = 0ll
WHILE NOT EOF(unit) DO BEGIN

READF, unit, str
count = count + 1

ENDWHILE
FREE_LUN, unit
RETURN, count

END

The primary advantage of FILE_LINES over the IDL version shown here is
efficiency. FILE_LINES is able to avoid the overhead of the WHILE loop as well as
not having to create an IDL string for each line of the file.

Syntax

Result = FILE_LINES(Path [, /NOEXPAND_PATH])

Return Value

Returns the number of lines of text contained within the specified file or files. If an
array of file names is specified via the Path parameter, the return value is an array
with the same number of elements as Path, with each element containing the number
of lines in the corresponding file.

Arguments

Path

A scalar string or string array containing the names of the text files for which the
number of lines is desired.

Keywords

NOEXPAND_PATH

If specified, FILE_LINES uses Path exactly as specified, without expanding any
wildcard characters or environment variable names included in the path. See
FILE_SEARCH for details on path expansion.
What’s New in IDL 5.6 FILE_LINES

202 Chapter 3: New IDL Routines
Examples

Read the contents of the text file mydata.dat into a string array.

nlines = FILE_LINES('mydata.dat')
sarr = STRARR(nlines)
OPENR, unit, 'mydata.dat',/GET_LUN
READF, unit, sarr
FREE_LUN, unit

Version History

Introduced: 5.6

See Also

READ/READF
FILE_LINES What’s New in IDL 5.6

Chapter 3: New IDL Routines 203
FILE_LINK

The FILE_LINK procedure creates UNIX file links, both regular (hard) and
symbolic. FILE_LINK is available only under UNIX.

A hard link is a directory entry that references a file. UNIX allows multiple such links
to exist simultaneously, meaning that a given file can be referenced by multiple
names. All such links are fully equivalent references to the same file (there are no
concepts of primary and secondary names). All files carry a reference count that
contains the number of hard links that point to them; deleting a link to a file does not
remove the actual file from the filesystem until the last hard link to the file is
removed. The following limitations on hard links are enforced by the operating
system:

• Hard links may not span filesystems, as hard linking is only possible within a
single filesystem.

• Hard links may not be created between directories, as doing so has the
potential to create infinite circular loops within the hierarchical UNIX
filesystem. Such loops will confuse many system utilities, and can even cause
filesystem damage.

A symbolic link is an indirect pointer to a file; its directory entry contains the name of
the file to which it is linked. Symbolic links may span filesystems and may refer to
directories.

Many users find symbolic links easier to understand and use. Due to their generality
and lack of restriction, RSI recommends their use over hard links for most purposes.
FILE_LINK creates symbolic links by default.

See “Rules Used by FILE_LINK” on page 204 for information on how FILE_LINK
interprets its arguments.

Syntax

FILE_LINK, SourcePath, DestPath [, /ALLOW_SAME] [, /HARDLINK]
[, /NOEXPAND_PATH] [, /VERBOSE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
linked.
What’s New in IDL 5.6 FILE_LINK

204 Chapter 3: New IDL Routines
DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories given by SourcePath are to be linked. If more than one file is to
be linked to a given destination, that destination must exist and be a directory.

Keywords

ALLOW_SAME

Attempting to link a file to itself by specifying the same file for SourcePath and
DestPath is usually considered to be an error. If the ALLOW_SAME keyword is set,
no link is created and the operation is considered to be successful.

HARDLINK

Set this keyword to create hard links. By default, FILE_LINK creates symbolic links.

NOEXPAND_PATH

Set this keyword to cause FILE_LINK to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

VERBOSE

Set this keyword to cause FILE_LINK to issue an informative message for every file
link operation it carries out.

Rules Used by FILE_LINK

The following rules govern how FILE_LINK operates:

• The arguments to FILE_LINK can be scalar or array. If both arguments are
arrays, they must contain the same number of elements, and the files are
paired, with each file from SourcePath being linked to the corresponding file
in the DestPath. If SourcePath is an array and DestPath is a scalar, all links are
created in the single location given by DestPath, which must exist and be a
directory.

• Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for a
given element of SourcePath are linked to the corresponding element of
FILE_LINK What’s New in IDL 5.6

Chapter 3: New IDL Routines 205
DestPath. If multiple files are linked to a single element of DestPath, that
element must exist and be a directory.

• If a file specified in DestPath does not exist, the corresponding file from
SourcePath is linked using the name specified by DestPath. Any parent
directories to the filename specified by DestPath must already exist.

• If DestPath names an existing regular file, FILE_LINK will not overwrite it.

• If DestPath names an existing directory, a link with the same name as the
source file is created in the directory. This is primarily of interest with hard
links.

Examples

Create a symbolic link named current.dat in the current working directory,
pointing to the file /master/data/saturn7.dat:

FILE_LINK, '/master/data/saturn7.dat', 'current.dat'

Version History

Introduced: 5.6

See Also

COPY_LUN, FILE_COPY, FILE_MOVE, FILE_READLINK
What’s New in IDL 5.6 FILE_LINK

206 Chapter 3: New IDL Routines
FILE_MOVE

The FILE_MOVE procedure renames files and directories, effectively moving them
to a new location. The moved files retain their permission and ownership attributes.
Within a given filesystem or volume, FILE_MOVE does not copy file data. Rather, it
simply changes the file names by updating the directory structure of the filesystem.
This operation is fast and safe, but is only possible within a single filesystem.
Attempts to move a regular file from one filesystem to another are carried out by
copying the file using FILE_COPY, and then deleting the original file. It is an error to
attempt to use FILE_MOVE to move a directory from one filesystem to another.

See “Rules Used by FILE_MOVE” on page 207 for information on how
FILE_MOVE interprets its arguments.

Syntax

FILE_MOVE, SourcePath, DestPath [, /ALLOW_SAME] [, /NOEXPAND_PATH]
[, /OVERWRITE] [, /REQUIRE_DIRECTORY] [, /VERBOSE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
moved.

DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories specified by SourcePath are to be moved. If more than one file is
to be moved to a given destination, that destination must exist and be a directory.

Keywords

ALLOW_SAME

Attempting to move a file on top of itself by specifying the same file for SourcePath
and DestPath is usually considered to be an error. If the ALLOW_SAME keyword is
set, no renaming is done and the operation is considered to be successful.
FILE_MOVE What’s New in IDL 5.6

Chapter 3: New IDL Routines 207
NOEXPAND_PATH

Set this keyword to cause FILE_MOVE to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

OVERWRITE

Set this keyword to allow FILE_MOVE to overwrite an existing file.

REQUIRE_DIRECTORY

Set this keyword to cause FILE_MOVE to require that DestPath exist and be a
directory.

VERBOSE

Set this keyword to cause FILE_MOVE to issue an informative message for every
file move operation it carries out.

Rules Used by FILE_MOVE

The following rules govern how FILE_MOVE operates:

• The arguments to FILE_MOVE can be scalar or array. If both arguments are
arrays, they must contain the same number of elements, and the files are
moved in pairs, with each file from SourcePath being renamed to the
corresponding file in the DestPath. If SourcePath is an array and DestPath is a
scalar, all files in SourcePath are renamed to the single location given by
DestPath, which must exist and be a directory.

• Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for
that element of SourcePath are renamed to the location specified by the
corresponding element of DestPath. If multiple files are renamed to a single
element of DestPath, that element must exist and be a directory.

• If a file specified in DestPath does not exist, the corresponding file from
SourcePath is moved using the name specified by DestPath. Any parent
directories to the filename specified by DestPath must already exist.

• If DestPath names an existing regular file, FILE_MOVE will not overwrite it,
unless the OVERWRITE keyword is specified.

• If DestPath names an existing directory and SourcePath names a regular (non-
directory) file, the source file is moved into the specified directory.
What’s New in IDL 5.6 FILE_MOVE

208 Chapter 3: New IDL Routines
• If DestPath specifies an existing directory and SourcePath also names a
directory, FILE_MOVE checks for the existence of a subdirectory of DestPath
with the same name as the source directory. If this subdirectory does not exist,
the source directory is moved to the specified location. If the subdirectory does
exist, an error is issued, and the rename operation is not carried out.

Examples

Rename the file backup.dat to primary.dat in the current working directory:

FILE_MOVE, 'backup.dat', 'primary.dat'

Create a subdirectory named BACKUP in the current working directory and move all
.pro files, makefile, and mydata.dat into it:

FILE_MKDIR, 'BACKUP'
FILE_MOVE, ['*.pro', 'makefile', 'mydata.dat'], 'BACKUP'

Version History

Introduced: 5.6

See Also

COPY_LUN, FILE_COPY, FILE_LINK
FILE_MOVE What’s New in IDL 5.6

Chapter 3: New IDL Routines 209
FILE_READLINK

The FILE_READLINK function returns the path pointed to by UNIX symbolic links.

Syntax

Result = FILE_READLINK(Path [, /ALLOW_NONEXISTENT]
[, /ALLOW_NONSYMLINK] [, /NOEXPAND_PATH])

Return Value

Returns the path associated with a symbolic link.

Arguments

Path

A scalar string or string array containing the names of the symbolic links to be
translated.

Keywords

ALLOW_NONEXISTENT

Set this keyword to return a NULL string rather than throwing an error if Path
contains a non-existent file.

ALLOW_NONSYMLINK

Set this keyword to return a NULL string rather than throwing an error if Path
contains a path to a file that is not a symbolic link.

NOEXPAND_PATH

Set this keyword to cause FILE_READLINK to use Path exactly as specified,
without expanding any wildcard characters or environment variable names included
in the path. See FILE_SEARCH for details on path expansion.
What’s New in IDL 5.6 FILE_READLINK

210 Chapter 3: New IDL Routines
Examples

Under Mac OS X, the /etc directory is actually a symbolic link. The following
statement reads it and returns the location to which the link points:

path = FILE_READLINK('/etc')

It is possible to have chains of symbolic links, each pointing to another. The
following function uses FILE_READLINK to iteratively translate such links until it
finds the actual file:

FUNCTION RESOLVE_SYMLINK, path

savepath = path ; Remember last successful translation
WHILE (path NE '') DO BEGIN

path = FILE_READLINK(path, /ALLOW_NONEXISTENT, $
/ALLOW_NONSYMLINK)

IF (path NE '') THEN BEGIN
; If returned path is not absolute, use it to replace the
; last path segment of the previous path.
IF (STRMID(path, 0, 1) NE '/') THEN BEGIN

last = STRPOS(savepath, '/', /REVERSE_SEARCH)
IF (last NE -1) THEN path = STRMID(savepath, 0, last) $

+ '/' + path
ENDIF
savepath = path

ENDIF
ENDWHILE

; FILE_EXPAND_PATH removes redundant things like /./ from
; the result.
RETURN, FILE_EXPAND_PATH(savepath)

END

Version History

Introduced: 5.6

See Also

FILE_LINK
FILE_READLINK What’s New in IDL 5.6

Chapter 3: New IDL Routines 211
FILE_SAME

It is common for a given file to be accessible via more than one name. For example, a
relative path and a fully-qualified path to the same file are considered different
names, since the strings that make up the paths are not lexically identical. In addition,
under UNIX, the widespread use of links (hard and symbolic) makes multiple names
for the same file very common.

The FILE_SAME function is used to determine if two different file names refer to the
same underlying file.

The mechanism used to determine whether two names refer to the same file depends
on the operating system in use:

UNIX: Under UNIX, all files are uniquely identified by two integer values: the
filesystem that contains the file and the inode number, which identifies the file within
the filesystem. If the input arguments are lexically identical, FILE_SAME will return
True, regardless of whether the file specified actually exists. Otherwise, FILE_SAME
compares the device and inode numbers of the two files, and returns True if they are
identical, or False otherwise.

Windows: Unlike UNIX, Microsoft Windows identifies files solely by their names.
FILE_SAME therefore expands the two supplied paths to their fully qualified forms,
and then performs a simple case insensitive string comparison to determine if the
paths are identical. This is reliable for local disk files, but can produce incorrect
results under some circumstances:

• UNC network paths can expand to different, but equivalent, paths. For
example, a network server may be referred to by either a name or an IP
address.

• Network attached storage can have mechanisms for giving multiple names to
the same file, but to the Windows client system the names will appear to refer
to different files. For example, a UNIX server using Samba software to serve
files to machines on a Windows network can use symbolic links to produce
two names for the same file, but these will appear as two distinct files to a
Windows machine.

For these reasons, FILE_SAME is primarily of interest on UNIX systems. Under
Windows, RSI recommends its use only on local files.

Syntax

Result = FILE_SAME(Path1, Path2 [, /NOEXPAND_PATH])
What’s New in IDL 5.6 FILE_SAME

212 Chapter 3: New IDL Routines
Return Value

FILE_SAME returns True (1) if two filenames refer to the same underlying file, or
False (0) otherwise. If either or both of the input arguments are arrays of file names,
the result is an array, following the same rules as standard IDL operators.

Arguments

Path1, Path2

Scalar or array string values containing the two file paths to be compared.

Keywords

NOEXPAND_PATH

Set this keyword to cause FILE_SAME to use the Path arguments exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion. The utility
of doing this depends on the operating system in use:

UNIX: Under UNIX, path expansion is not necessary unless the Path arguments use
shell meta characters or environment variables.

Windows: By default, FILE_SAME expands the supplied paths to their fully
qualified forms in order to be able to compare them. Preventing this path expansion
cripples its ability to make a useful comparison, and is not recommended.

Examples

UNIX command shells often provide the HOME environment variable to point at the
user’s home directory. Many shells also expand the '~' character to point at the
home directory. The following IDL statement determines if these two mechanisms
refer to the same directory:

PRINT, FILE_SAME('~', '$HOME')

On a UNIX system, the following statement determines if the current working
directory is the same as your home directory:

PRINT, FILE_SAME('.', '$HOME')
FILE_SAME What’s New in IDL 5.6

Chapter 3: New IDL Routines 213
On some BSD-derived UNIX systems, the three commands /bin/cp, /bin/ln,
and /bin/mv are actually three hard links to the same binary file. The following
statement will print the number 1 if this is true on your system:

PRINT, TOTAL(FILE_SAME('/bin/cp', ['/bin/ln', '/bin/mv'])) EQ 2

Under Mac OS X, the /etc directory is actually a symbolic link to /private/etc.
As a result, the following lines of code provide a simple test to determine whether
Mac OS X is the current platform:

IF FILE_SAME('/etc', '/private/etc') THEN $
PRINT, 'Running Mac OS X' ELSE $
PRINT, 'Not Running Mac OS X'

Note
The above lines are shown simply as an example; checking the value of
!VERSION.OS_FAMILY is a more reliable method of determining which
operating system is in use.

Version History

Introduced: 5.6

See Also

FILE_EXPAND_PATH, FILE_INFO, FILE_SEARCH, FILE_TEST
What’s New in IDL 5.6 FILE_SAME

214 Chapter 3: New IDL Routines
H5_BROWSER

The H5_BROWSER function presents a graphical user interface for viewing and
reading HDF5 files. The browser provides a tree view of the HDF5 file or files, a data
preview window, and an information window for the selected objects. The browser
may be created as either a selection dialog with Open/Cancel buttons, or as a
standalone browser that can import data to the IDL main program level.

Note
This function is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax

Result = H5_BROWSER([Files] [, /DIALOG_READ])

Return Value

If the DIALOG_READ keyword is specified then the Result is a structure containing
the selected group or dataset (as described in the H5_PARSE function), or a zero if
the Cancel button was pressed. If the DIALOG_READ keyword is not specified then
the Result is the widget ID of the HDF5 browser.

Arguments

Files

An optional scalar string or string array giving the name of the files to initially open.
Additional files may be opened interactively. If Files is not provided then the user is
automatically presented with a File Open dialog upon startup.

Keywords

DIALOG_READ

If this keyword is set then the HDF5 browser is created as a modal Open/Cancel
dialog instead of a standalone GUI. In this case, the IDL command line is blocked,
and no further input is taken until the Open or Cancel button is pressed. If the
GROUP_LEADER keyword is specified, then that widget ID is used as the group
leader, otherwise a default group leader base is created.
H5_BROWSER What’s New in IDL 5.6

Chapter 3: New IDL Routines 215
All keywords to WIDGET_BASE, such as GROUP_LEADER and TITLE, are
passed on to the top-level base.

Graphical User Interface Options

Open HDF5 file

Click on this button to bring up a file selection dialog. Multiple files may be selected
for parsing. All selected files are added to the tree view.

Show preview

If this toggle button is selected, then the data within datasets will be shown in the
preview window. One-dimensional datasets will be shown as line plots. Two-
dimensional datasets will be shown as images, along with any provided image
palettes. For three or higher-dimensional datasets, a two dimensional slice will be
shown.

Fit in window

If this toggle button is selected, then the preview image will be scaled larger or
smaller to fit within the preview window. The aspect ratio of the image will be
unchanged.

Flip vertical

If this toggle button is selected, then the preview image will flipped from top to
bottom.

Flip horizontal

If this toggle button is selected, then the preview image will flipped from left to right.

Note
If the DIALOG_READ keyword is present then the following options are available:

Open

Click on this button to close the HDF5 browser, and return an IDL structure
containing the selected group or dataset, as described in the H5_PARSE function.

Cancel

Click on this button to close the HDF5 browser, and return a scalar zero for the result.
What’s New in IDL 5.6 H5_BROWSER

216 Chapter 3: New IDL Routines
Note
If the DIALOG_READ keyword is not present then the following options are
available:

Variable name for import

Set this text string to the name of the IDL variable to construct when importing HDF5
data to IDL structures. If the entered name is not a valid IDL identifier, then a valid
identifier will be constructed by converting all non-alphanumeric characters to
underscores.

Include data

If this toggle button is selected, then all data within the selected datasets will be read
in from the HDF5 file and included in the IDL structure.

Import to IDL

Click on this button to import the currently selected HDF5 object into the IDL main
program level. Imported variables will consist of a nested hierarchy of IDL
structures, as described in the H5_PARSE function.

Done

Click on this button to close the HDF5 browser.

Example

The following example starts up the HDF5 browser on a sample file:

File = FILEPATH('hdf5_test.h5', SUBDIR=['examples','data'])
Result = H5_BROWSER(File)

Version History

Introduced 5.6

See Also

H5_PARSE
H5_BROWSER What’s New in IDL 5.6

Chapter 3: New IDL Routines 217
H5_CLOSE

The H5_CLOSE procedure flushes all data to disk, closes file identifiers, and cleans
up memory. This routine closes IDL’s link to its HDF5 libraries. This procedure is
used automatically by IDL when RESET_SESSION is issued, but it may also be
called if the user desires to free all HDF5 resources.

Syntax

H5_CLOSE

Arguments

None.

Keywords

None.

Version History

Introduced 5.6

See Also

H5_OPEN
What’s New in IDL 5.6 H5_CLOSE

218 Chapter 3: New IDL Routines
H5_GET_LIBVERSION

The H5_GET_LIBVERSION function returns the current version of the HDF5
library used by IDL.

Syntax

Result = H5_GET_LIBVERSION()

Return Value

Returns a string in the form of ‘maj.min.rel’, where maj is the major number, min is
the minor number, and rel is the release number. An example would be ‘1.4.3’,
representing HDF5 version 1.4.3.

Arguments

None.

Keywords

None.

Version History

Introduced 5.6

See Also

H5_OPEN
H5_GET_LIBVERSION What’s New in IDL 5.6

Chapter 3: New IDL Routines 219
H5_OPEN

The H5_OPEN procedure initializes IDL’s HDF5 library. This procedure is issued
automatically by IDL when one of IDL’s HDF5 routines is used.

Note
This routine is provided for diagnostic purposes only. You do not need to use this
routine while working with IDL’s HDF5 routines.

Syntax

H5_OPEN

Arguments

None.

Keywords

None.

Version History

Introduced 5.6

See Also

H5_CLOSE, H5_GET_LIBVERSION
What’s New in IDL 5.6 H5_OPEN

220 Chapter 3: New IDL Routines
H5_PARSE

The H5_PARSE function recursively descends through an HDF5 file or group and
creates an IDL structure containing object information and data.

Note
This function is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax

Result = H5_PARSE (File [, /READ_DATA])

or

Result = H5_PARSE (Loc_id, Name [, FILE=string] [, PATH=string]
[, /READ_DATA])

Return Value

The Result is an IDL structure containing the parsed file or group. The fields within
each structure in Result depend upon the object type.
H5_PARSE What’s New in IDL 5.6

Chapter 3: New IDL Routines 221
Structure Fields Common to All Object Types

Additional Fields for Groups, Datasets, and Named Datatypes

Additional Fields for Groups

Additional Fields for Datasets, Attributes, and Named Datatypes

Field Description

_NAME Object name, or the filename if at the top
level

_ICONTYPE Name of associated icon, used by
H5_BROWSER

_TYPE Object type, such as GROUP, DATASET,
DATATYPE, ATTRIBUTE, or LINK

Table 3-1: Structure Fields Common to All Object Types

Field Description

_FILE The filename to which the object belongs

_PATH Full path to the group, dataset, or
datatype within the file

Table 3-2: Additional Fields for Groups, Datasets, and Named Datatypes

Field Description

_COMMENT Comment string

Table 3-3: Additional Fields for Groups

Field Description

_DATATYPE Datatype class, such as H5T_INTEGER

_STORAGESIZE Size of each value in bytes

_PRECISION Precision of each value in bits

Table 3-4: Additional Fields for Datasets, Attributes, and Named Datatypes
What’s New in IDL 5.6 H5_PARSE

222 Chapter 3: New IDL Routines
Additional Fields for Datasets and Attributes

Groups, datasets, datatypes, and attributes will be stored as substructures within
Result. The tag names for these substructures are constructed from the actual object
name by converting all non-alphanumeric characters to underscores, and converting
all characters to uppercase.

Arguments

File

A string giving the name of the file to parse.

Loc_id

An integer giving the file or group identifier to access.

Name

A string giving the name of the group, dataset, or datatype within Loc_id to parse.

_SIGN For integers, either 'signed' or 'unsigned';
otherwise a null string

Field Description

_DATA Data values stored in the object

_NDIMENSIONS Number of dimensions in the dataspace

_DIMENSIONS List of dataspace dimensions

_NELEMENTS Total number of elements in the
dataspace

Table 3-5: Additional Fields for Datasets and Attributes

Field Description

Table 3-4: Additional Fields for Datasets, Attributes, and Named Datatypes
H5_PARSE What’s New in IDL 5.6

Chapter 3: New IDL Routines 223
Keywords

FILE

Set this optional keyword to a string giving the filename associated with the Loc_id.
This keyword is used for filling in the _FILE field within the returned structure, and
is not required. The FILE keyword is ignored if the File argument is provided.

PATH

Set this optional keyword to a string giving the full path associated with the Loc_id.
This keyword is used for filling in the _PATH field within the returned structure, and
is not required. The PATH keyword is ignored if the File argument is provided.

READ_DATA

If this keyword is set, then all data from datasets is read in and stored in the returned
structure. If READ_DATA is not provided then the _DATA field for datasets will be
set to the string '<unread>'.

Note
For attribute objects all data is automatically read and stored in the structure.

Example

The following example shows how to parse a file, and then prints out the parsed
structure.

File = FILEPATH('hdf5_test.h5', SUBDIR=['examples','data'])
Result = H5_PARSE(File)
help, Result, /STRUCTURE

When the above commands are entered, IDL prints:

** Structure <5f24468>, 13 tags, length=6872, data length=6664,
refs=1:

_NAME STRING 'D:\RSI\idl56\examples\data\hdf5_test.h5'
_ICONTYPE STRING 'hdf'
_TYPE STRING 'GROUP'
_FILE STRING 'D:\RSI\idl56\examples\data\hdf5_test.h5'
_PATH STRING '/'
_COMMENT STRING ''
_2D_INT_ARRAY STRUCT -> <Anonymous> Array[1]
A_NOTE STRUCT -> <Anonymous> Array[1]
SL_TO_3D_INT_ARRAY
STRUCT -> <Anonymous> Array[1]
What’s New in IDL 5.6 H5_PARSE

224 Chapter 3: New IDL Routines
ARRAYS STRUCT -> <Anonymous> Array[1]
DATATYPES STRUCT -> <Anonymous> Array[1]
IMAGES STRUCT -> <Anonymous> Array[1]
LINKS STRUCT -> <Anonymous> Array[1]

Now print out the structure of a dataset within the "Images" group:

help, Result.images.eskimo, /STRUCTURE

IDL prints:

** Structure <16f1ca0>, 20 tags, length=840, data length=802,
refs=2:

_NAME STRING 'Eskimo'
_ICONTYPE STRING 'binary'
_TYPE STRING 'DATASET'
_FILE STRING

'D:\RSI\debug\examples\data\hdf5_test.h5'
_PATH STRING '/images'
_DATA STRING '<unread>'
_NDIMENSIONS LONG 2
_DIMENSIONS ULONG64 Array[2]
_NELEMENTS ULONG64 389400
_DATATYPE STRING 'H5T_INTEGER'
_STORAGESIZE ULONG 1
_PRECISION LONG 8
_SIGN STRING 'unsigned'
CLASS STRUCT -> <Anonymous> Array[1]
IMAGE_VERSION STRUCT -> <Anonymous> Array[1]
IMAGE_SUBCLASS STRUCT -> <Anonymous> Array[1]
IMAGE_COLORMODEL

STRUCT -> <Anonymous> Array[1]
IMAGE_MINMAXRANGE

STRUCT -> <Anonymous> Array[1]
IMAGE_TRANSPARENCY

STRUCT -> <Anonymous> Array[1]
PALETTE STRUCT -> <Anonymous> Array[1]

Version History

Introduced 5.6

See Also

H5_BROWSER
H5_PARSE What’s New in IDL 5.6

Chapter 3: New IDL Routines 225
H5A_CLOSE

The H5A_CLOSE procedure closes the specified attribute and releases resources
used by it. After this routine is used, the attribute’s identifier is no longer available
until the H5A_OPEN routines are used again to specify that attribute. Further use of
the attribute identifier is illegal.

Syntax

H5A_CLOSE, Attribute_id

Arguments

Attribute_id

An integer representing the attribute’s identifier to be closed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_OPEN_NAME, H5A_OPEN_IDX
What’s New in IDL 5.6 H5A_CLOSE

226 Chapter 3: New IDL Routines
H5A_GET_NAME

The H5A_GET_NAME function retrieves an attribute name given the attribute
identifier number.

Syntax

Result = H5A_GET_NAME(Attribute_id)

Return Value

Returns a string containing the attribute name.

Arguments

Attribute_id

An integer representing the attribute’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_GET_SPACE, H5A_GET_TYPE
H5A_GET_NAME What’s New in IDL 5.6

Chapter 3: New IDL Routines 227
H5A_GET_NUM_ATTRS

The H5A_GET_NUM_ATTRS function returns the number of attributes attached to a
group, dataset, or a named datatype.

Syntax

Result = H5A_GET_NUM_ATTRS(Loc_id)

Return Value

Returns an integer representing the number of attributes.

Arguments

Loc_id

An integer representing the identifier of the group, dataset, or named datatype to
query.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_OPEN_IDX
What’s New in IDL 5.6 H5A_GET_NUM_ATTRS

228 Chapter 3: New IDL Routines
H5A_GET_SPACE

The H5A_GET_SPACE function returns the identifier number of a copy of the
dataspace for an attribute.

Syntax

Result = H5A_GET_SPACE(Attribute_id)

Return Value

Returns an integer representing the dataspace’s identifier. This identifier can be
released with the H5S_CLOSE.

Arguments

Attribute_id

An integer representing the attribute’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_GET_NAME, H5A_GET_TYPE, H5S_CLOSE
H5A_GET_SPACE What’s New in IDL 5.6

Chapter 3: New IDL Routines 229
H5A_GET_TYPE

The H5A_GET_TYPE function returns the identifier number of a copy of the
datatype for an attribute.

Syntax

Result = H5A_GET_TYPE(Attribute_id)

Return Value

Returns an integer representing the datatype identifier. This identifier should be
released with the H5T_CLOSE.

Arguments

Attribute_id

An integer representing the attribute identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_GET_SPACE, H5A_GET_NAME, H5T_CLOSE
What’s New in IDL 5.6 H5A_GET_TYPE

230 Chapter 3: New IDL Routines
H5A_OPEN_IDX

The H5A_OPEN_IDX function opens an existing attribute by the index of that
attribute within an HDF5 file.

Syntax

Result = H5A_OPEN_IDX(Loc_id, Index)

Return Value

Returns an integer representing the attribute’s identifier number.

Arguments

Loc_id

An integer representing the identifier of the group, dataset, or named datatype
containing the attribute within.

Index

An integer representing the zero-based index of the attribute to be accessed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_OPEN_NAME, H5A_GET_NUM_ATTRS, H5A_GET_NAME,
H5A_CLOSE
H5A_OPEN_IDX What’s New in IDL 5.6

Chapter 3: New IDL Routines 231
H5A_OPEN_NAME

The H5A_OPEN_NAME function opens an existing attribute by the name of that
attribute within an HDF5 file.

Syntax

Result = H5A_OPEN_NAME(Loc_id, Name)

Return Value

Returns an integer representing the attribute’s identifier number.

Arguments

Loc_id

An integer representing the identifier of the group, dataset, or named datatype
containing the attribute within.

Name

A string representing the name of the attribute to be accessed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_OPEN_IDX, H5A_CLOSE
What’s New in IDL 5.6 H5A_OPEN_NAME

232 Chapter 3: New IDL Routines
H5A_READ

The H5A_READ function reads the data within an attribute, converting from the
HDF5 file datatype into the HDF5 memory datatype, and finally into the
corresponding IDL datatype.

Syntax

Result = H5A_READ(Attribute_id)

Return Value

Returns an IDL variable containing all of the attribute’s data. For details on different
return types and storage mechanisms, see the H5D_READ function.

Arguments

Attribute_id

An integer representing the attribute’s identifier to be read.

Keywords

None.

Version History

Introduced 5.6

See Also

H5A_OPEN_NAME, H5A_OPEN_IDX, H5D_READ
H5A_READ What’s New in IDL 5.6

Chapter 3: New IDL Routines 233
H5D_CLOSE

The H5D_CLOSE procedure closes the specified dataset and releases its used
resources. After this routine is used, the dataset’s identifier is no longer available
until the H5D_GET_SPACE is used again to specify that dataset.

Syntax

H5D_CLOSE, Dataset_id

Arguments

Dataset_id

An integer representing the dataset’s identifier to be closed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5D_OPEN
What’s New in IDL 5.6 H5D_CLOSE

234 Chapter 3: New IDL Routines
H5D_GET_SPACE

The H5D_GET_SPACE function returns an identifier number for a copy of the
dataspace for a dataset.

Syntax

Result = H5D_GET_SPACE(Dataset_id)

Return Value

Returns an integer representing the dataspace’s identifier. This identifier can be
released with the H5S_CLOSE.

Arguments

Dataset_id

An integer representing the dataset’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_CLOSE, H5D_GET_STORAGE_SIZE, H5D_GET_TYPE
H5D_GET_SPACE What’s New in IDL 5.6

Chapter 3: New IDL Routines 235
H5D_GET_STORAGE_SIZE

The H5D_GET_STORAGE_SIZE function returns the amount of storage in bytes
required for a dataset. For chunked datasets, this value is the number of allocated
chunks times the chunk size.

Note
This function does not typically need to be called, as IDL will automatically
allocate the necessary memory when reading data.

Syntax

Result = H5D_GET_STORAGE_SIZE(Dataset_id)

Return Value

Returns an integer representing the amount of storage in bytes.

Arguments

Dataset_id

An integer representing the dataset’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_CLOSE, H5D_GET_SPACE, H5D_GET_TYPE
What’s New in IDL 5.6 H5D_GET_STORAGE_SIZE

236 Chapter 3: New IDL Routines
H5D_GET_TYPE

The H5D_GET_TYPE function returns an identifier number for a copy of the
datatype for a dataset.

Syntax

Result = H5D_GET_TYPE(Dataset_id)

Return Value

Returns an integer representing the datatype’s identifier. This identifier can be
released with the H5T_CLOSE.

Arguments

Dataset_id

An integer representing the dataset’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_CLOSE, H5D_GET_SPACE, H5D_GET_STORAGE_SIZE
H5D_GET_TYPE What’s New in IDL 5.6

Chapter 3: New IDL Routines 237
H5D_OPEN

The H5D_OPEN function opens an existing dataset within an HDF5 file.

Syntax

Result = H5D_OPEN(Loc_id, Name)

Return Value

Returns an integer representing the dataset’s identifier. This identifier can be released
with the H5D_CLOSE.

Arguments

Loc_id

An integer representing the identifier of the file or group containing the dataset.

Name

A string representing the name of the dataset to be accessed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5D_CLOSE
What’s New in IDL 5.6 H5D_OPEN

238 Chapter 3: New IDL Routines
H5D_READ

The H5D_READ function reads the data within a dataset, converting from the HDF5
file datatype into the HDF5 memory datatype, and finally into the corresponding IDL
datatype.

Syntax

Result = H5D_READ(Dataset_id [, FILE_SPACE=id] [, MEMORY_SPACE=id])

Return Value

Returns an IDL variable containing the specified data. The different return types and
storage mechanisms are described below.

Note
The dimensions for the Result variable are constructed using the following
precedence rules:

If MEMORY_SPACE is specified, then the dimensions of the MEMORY_SPACE
are used.

If only FILE_SPACE is specified, then the dimensions of the FILE_SPACE are
used.

If neither MEMORY_SPACE nor FILE_SPACE are specified, then the dimensions
are taken from the Dataset_id.

Arguments

Dataset_id

An integer representing the dataset’s identifier to be read.
H5D_READ What’s New in IDL 5.6

Chapter 3: New IDL Routines 239
Keywords

FILE_SPACE

Set this keyword to the file dataspace identifier that should be used when reading the
dataset. The FILE_SPACE keyword may be used to define hyperslabs or elements for
subselection within the dataset. The default is zero (in HDF5 this is equivalent to
H5S_ALL), which indicates that the entire dataspace should be read.

MEMORY_SPACE

Set this keyword to the memory dataspace identifier that should be used when
copying the data from the file into memory. The MEMORY_SPACE keyword may be
used to define hyperslabs or elements in which to place the data. The default is zero
(in HDF5 this is equivalent to H5S_ALL), which indicates that the memory
dataspace is identical to the file dataspace.

Return Type

When reading in HDF5 datasets, the datatype is first set to the native HDF5 types.
These native types are then converted to IDL types as shown in the following table:

HDF5 Class HDF5 Datatype IDL Type

H5T_INTEGER

H5T_BITFIELD

H5T_ENUM

H5T_NATIVE_UINT8 Byte

H5T_NATIVE_INT16 Integer

H5T_NATIVE_UINT16 Unsigned integer

H5T_NATIVE_INT32 Long integer

H5T_NATIVE_UINT32 Unsigned long integer

H5T_NATIVE_INT64 64-bit Integer

H5T_NATIVE_UINT64 Unsigned 64-bit integer

H5T_REFERENCE H5T_STD_REF_OBJ Unsigned 64-bit integer

H5T_FLOAT H5T_NATIVE_FLOAT Floating point

H5T_NATIVE_DOUBLE Double-precision floating

Table 3-6: HDF and IDL Datatypes
What’s New in IDL 5.6 H5D_READ

240 Chapter 3: New IDL Routines
Note
Multidimensional datasets are returned in IDL row major order, with the fastest-
varying dimensions listed first. HDF5 uses C column major order, with the fastest-
varying dimensions listed last. In both cases, the memory layout for data elements is
identical (i.e. no transpose is needed), only the order of the dimensions is reversed.

Note
For the H5T_ARRAY datatype the array dimensions are concatenated with the
dataset dimensions, with the array dimensions varying more rapidly.

Note
Structure tag names are constructed from H5T_COMPOUND member names by
switching to uppercase and converting all non-alphanumeric characters to
underscores.

Version History

Introduced 5.6

See Also

H5D_CLOSE, H5D_OPEN, H5A_READ, H5S_CREATE_SIMPLE,
H5S_SELECT_ELEMENTS, H5S_SELECT_HYPERSLAB

H5T_STRING H5T_C_S1 String

H5T_TIME H5T_C_S1 String

H5T_COMPOUND (Member datatypes) Structure

H5T_ARRAY (Super datatype) (Super type)

HDF5 Class HDF5 Datatype IDL Type

Table 3-6: HDF and IDL Datatypes (Continued)
H5D_READ What’s New in IDL 5.6

Chapter 3: New IDL Routines 241
H5F_CLOSE

The H5F_CLOSE procedure closes the specified file and releases resources used by
it. After this routine is used, the file’s identifier is no longer available until the
H5F_CLOSE routine is used again to specify that file.

Syntax

H5F_CLOSE, File_id

Arguments

File_id

An integer representing the file’s identifier to be closed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5F_OPEN
What’s New in IDL 5.6 H5F_CLOSE

242 Chapter 3: New IDL Routines
H5F_IS_HDF5

The H5F_IS_HDF5 function determines if a file is in the HDF5 format.

Syntax

Result = H5F_IS_HDF5(Filename)

Return Value

Returns an integer of 1 if the file is in the HDF5 format, 0 if otherwise.

Arguments

Filename

A string representing the name of the files to be checked.

Keywords

None.

Version History

Introduced 5.6

See Also

H5F_OPEN
H5F_IS_HDF5 What’s New in IDL 5.6

Chapter 3: New IDL Routines 243
H5F_OPEN

The H5F_OPEN function opens an existing HDF5 file.

Syntax

Result = H5F_OPEN(Filename)

Return Value

Returns an integer representing the file identifier number. This identifier can be
released with the H5F_CLOSE.

Arguments

Filename

A string representing the name of the file to be accessed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5F_CLOSE, H5F_IS_HDF5
What’s New in IDL 5.6 H5F_OPEN

244 Chapter 3: New IDL Routines
H5G_CLOSE

The H5G_CLOSE procedure closes the specified group and releases resources used
by it. After this routine is used, the group’s identifier is no longer available until the
H5F_OPEN routine is used again to specify that group.

Syntax

H5G_CLOSE, Group_id

Arguments

Group_id

An integer representing the group’s identifier to be closed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5G_OPEN
H5G_CLOSE What’s New in IDL 5.6

Chapter 3: New IDL Routines 245
H5G_GET_COMMENT

The H5G_GET_COMMENT function retrieves a comment string from a specified
object.

Syntax

Result = H5G_GET_COMMENT(Loc_id, Name)

Return Value

Returns a string containing the comment, or a null string if no comment exists.

Arguments

Loc_id

An integer representing the identifier of the file or group.

Name

A string representing the name of the object for which to retrieve the comment.

Keywords

None.

Version History

Introduced 5.6

See Also

H5G_GET_OBJINFO
What’s New in IDL 5.6 H5G_GET_COMMENT

246 Chapter 3: New IDL Routines
H5G_GET_LINKVAL

The H5G_GET_LINKVAL function returns the name of the object pointed to by a
symbolic link.

Syntax

Result = H5G_GET_LINKVAL(Loc_id, Name)

Return Value

Returns a string containing the name of the object pointed to by a symbolic link.

Arguments

Loc_id

An integer representing the identifier of the file or group.

Name

A string representing the name of the symbolic link for which to retrieve the link
value.

Keywords

None.

Version History

Introduced 5.6

See Also

H5G_GET_OBJINFO
H5G_GET_LINKVAL What’s New in IDL 5.6

Chapter 3: New IDL Routines 247
H5G_GET_MEMBER_NAME

The H5G_GET_MEMBER_NAME function retrieves the name of an object within a
group, by its zero-based index.

Note
This function is not part of the standard HDF5 interface, but is provided as a
programming convenience. The H5Giterate() C function is used to retrieve the
name.

Syntax

Result = H5G_GET_MEMBER_NAME(Loc_id, Name, Index)

Return Value

Returns a string containing the object’s name.

Arguments

Loc_id

An integer representing the identifier of the file or group.

Name

A string representing the name of the group in which to retrieve the member name.

Index

An integer representing the zero-based index of the object for which to retrieve the
name.

Keywords

None.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5G_GET_MEMBER_NAME

248 Chapter 3: New IDL Routines
See Also

H5G_GET_NMEMBERS
H5G_GET_MEMBER_NAME What’s New in IDL 5.6

Chapter 3: New IDL Routines 249
H5G_GET_NMEMBERS

The H5G_GET_NMEMBERS function returns the number of objects within a group.

Note
This function is not part of the standard HDF5 interface, but is provided as a
programming convenience. The H5Giterate() C function is used to retrieve the
number of members.

Syntax

Result = H5G_GET_NMEMBERS(Loc_id, Name)

Return Value

Returns an integer representing the number of objects.

Arguments

Loc_id

An integer representing the identifier of the file or group.

Name

A string representing the name of the group for which to retrieve the number of
members.

Keywords

None.

Version History

Introduced 5.6

See Also

H5G_GET_MEMBER_NAME
What’s New in IDL 5.6 H5G_GET_NMEMBERS

250 Chapter 3: New IDL Routines
H5G_GET_OBJINFO

The H5G_GET_OBJINFO function retrieves information from a specified object.

Syntax

Result = H5G_GET_OBJINFO(Loc_id, Name [, /FOLLOW_LINK])

Return Value

Returns a structure of the name H5F_STAT containing the following fields:

FILENO

This field contains two integers which, along with the OBJNO field, uniquely
identify the object among all open HDF5 files.

OBJNO

This field contains two integers which, along with the FILENO field, uniquely
identify the object among all open HDF5 files. If all four values in FILENO and
OBJNO are the same between two objects, then these two objects are the same.

NLINK

The number of hard links to the object. If this field is zero, then the object is a
symbolic link.

TYPE

A string representing the object type. Possible values are:

• ‘LINK’

• ‘GROUP’

• ‘DATASET’

• ‘TYPE’

• ‘UNKNOWN’
H5G_GET_OBJINFO What’s New in IDL 5.6

Chapter 3: New IDL Routines 251
MTIME

The modification time for the object, in seconds since 1 January 1970.

Tip
You can convert the MTIME field from seconds to a date/time string using
SYSTIME(0, mtime). See SYSTIME for more information.

LINKLEN

If the object is a symbolic link (and the FOLLOW_LINK keyword is not set), then
this field will contain the length in characters of the link value. The link value itself
may be retrieved using H5D_GET_LINKVAL.

Arguments

Loc_id

An integer representing the identifier of the file or group.

Name

A string representing the name of the object for which to retrieve the information
structure.

Keywords

FOLLOW_LINK

If Name is a symbolic link, then set this keyword to follow the symbolic link and
retrieve information about the linked object. The default is to return information
about the symbolic link itself.

Version History

Introduced 5.6

See Also

H5G_GET_LINKVAL
What’s New in IDL 5.6 H5G_GET_OBJINFO

252 Chapter 3: New IDL Routines
H5G_OPEN

The H5G_OPEN function opens an existing group within an HDF5 file.

Syntax

Result = H5G_OPEN(Loc_id, Name)

Return Value

Returns an integer representing the group’s identifier number. This identifier can be
released with the H5G_CLOSE.

Arguments

Loc_id

An integer representing the identifier of the file or group containing the group to be
accessed.

Name

A string representing the name of the group to be accessed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5G_CLOSE
H5G_OPEN What’s New in IDL 5.6

Chapter 3: New IDL Routines 253
H5I_GET_TYPE

The H5I_GET_TYPE function returns the object’s type.

Syntax

Result = H5I_GET_TYPE(Obj_id)

Return Value

Returns a string representing the object type. Possible return values include:

• ‘FILE‘

• ‘GROUP‘

• ‘DATATYPE‘

• ‘DATASPACE‘

• ‘DATASET‘

• ‘ATTR‘

• ‘BADID‘

Arguments

Obj_id

An integer representing the object’s identifier for which to return the type.

Keywords

None.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5I_GET_TYPE

254 Chapter 3: New IDL Routines
H5R_DEREFERENCE

The H5R_DEREFERENCE function opens a reference and returns the object
identifier.

Syntax

Result = H5R_DEREFERENCE(Loc_id, Reference)

Return Value

The Result is an integer giving the identifier number. This identifier should be
released using the appropriate close procedure.

Arguments

Loc_id

An integer giving the identifier in which the reference dataset is located.

Reference

An integer giving the reference number to open.

Keywords

None.

Version History

Introduced 5.6

See Also

H5R_GET_OBJECT_TYPE
H5R_DEREFERENCE What’s New in IDL 5.6

Chapter 3: New IDL Routines 255
H5R_GET_OBJECT_TYPE

The H5R_GET_OBJECT_TYPE function returns the type of object that an object
reference points to.

Syntax

Result = H5R_GET_OBJECT_TYPE(Loc_id, Reference)

Return Value

The Result is a string giving the object type. Possible return values include:

• ‘FILE’

• ‘GROUP’

• ‘DATASET’

• ‘DATASPACE’

• ‘DATASET’

• ‘ATTR’

• ‘BADID’

Arguments

Loc_id

An integer giving the identifier in which the reference dataset is located.

Reference

An integer giving the reference number to query.

Keywords

None.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5R_GET_OBJECT_TYPE

256 Chapter 3: New IDL Routines
See Also

H5R_DEREFERENCE
H5R_GET_OBJECT_TYPE What’s New in IDL 5.6

Chapter 3: New IDL Routines 257
H5S_CLOSE

The H5S_CLOSE procedure releases and terminates access to a dataspace. After this
routine is used, the dataspace’s identifier is no longer available.

Warning
Failure to release a dataspace using this procedure will result in resource leaks.

Syntax

H5S_CLOSE, Dataspace_id

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to close.

Keywords

None.

Version History

Introduced 5.6

See Also

H5D_GET_SPACE
What’s New in IDL 5.6 H5S_CLOSE

258 Chapter 3: New IDL Routines
H5S_COPY

The H5S_COPY function copies an existing dataspace.

Syntax

Result = H5S_COPY(Dataspace_id)

Return Value

Returns an integer representing the dataspace’s identifier number. The dataspace
identifier can be released with the H5S_CLOSE.

Arguments

Dataspace_id

An integer representing the dataspace identifier to copy.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_CREATE_SIMPLE, H5S_CLOSE
H5S_COPY What’s New in IDL 5.6

Chapter 3: New IDL Routines 259
H5S_CREATE_SIMPLE

The H5S_CREATE_SIMPLE function creates a simple dataspace.

Syntax

Result = H5S_CREATE_SIMPLE(Dimensions [, MAX_DIMENSIONS=vector])

Return Value

Returns an integer representing the dataspace’s identifier number. This dataspace
identifier can be released with the H5S_CLOSE.

Arguments

Dimensions

Set this argument to a vector containing the dimensions for the dataspace.

Note
The Dimensions argument should be specified in IDL’s row-major order. Internally,
the dimensions will be reversed to match HDF5/C’s column-major order.

Keywords

MAX_DIMENSIONS

Set this keyword to a vector containing the maximum dimensions for the dataspace.
The MAX_DIMENSIONS must have the same number of elements as the
Dimensions argument. If MAX_DIMENSIONS is omitted then the maximum
dimensions are set to Dimensions. You can use a value of -1 in MAX_DIMENSIONS
to indicate an unlimited dimension.

Note
The MAX_DIMENSIONS keyword should be specified in IDL’s row-major order.
Internally, the dimensions will be reversed to match HDF5/C’s column-major order.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5S_CREATE_SIMPLE

260 Chapter 3: New IDL Routines
See Also

H5S_CLOSE, H5S_COPY
H5S_CREATE_SIMPLE What’s New in IDL 5.6

Chapter 3: New IDL Routines 261
H5S_GET_SELECT_BOUNDS

The H5S_GET_SELECT_BOUNDS function retrieves the coordinates of the
bounding box containing the current dataspace selection.

Syntax

Result = H5S_GET_SELECT_BOUNDS(Dataspace_id)

Return Value

Returns an (m x 2) array, where m is the number of dimensions (or rank) of the
dataspace. The first row in the array is the starting coordinates of the bounding box,
while the second row is the ending coordinates.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SIMPLE_EXTENT_NPOINTS, H5S_GET_SELECT_NPOINTS,
H5S_GET_SELECT_ELEM_NPOINTS,
H5S_GET_SELECT_HYPER_NBLOCKS
What’s New in IDL 5.6 H5S_GET_SELECT_BOUNDS

262 Chapter 3: New IDL Routines
H5S_GET_SELECT_ELEM_NPOINTS

The H5S_GET_SELECT_ELEM_NPOINTS function determines the number of
element points in the current dataspace selection.

Syntax

Result = H5S_GET_SELECT_ELEM_NPOINTS(Dataspace_id)

Return Value

Returns an integer representing the number of element points.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_BOUNDS, H5S_GET_SELECT_HYPER_NBLOCKS,
H5S_GET_SELECT_NPOINTS, H5S_GET_SIMPLE_EXTENT_NPOINTS
H5S_GET_SELECT_ELEM_NPOINTS What’s New in IDL 5.6

Chapter 3: New IDL Routines 263
H5S_GET_SELECT_ELEM_POINTLIST

The H5S_GET_SELECT_ELEM_POINTLIST function returns a list of the element
points in the current dataspace selection.

Syntax

Result = H5S_GET_SELECT_ELEM_POINTLIST(Dataspace_id [, START=value]
[, NUMBER=value])

Return Value

The Result is an (m x n) array, where m is the number of dimensions (or rank) of the
dataspace, and n is the number of selected points. Each row contains the coordinates
for an element selection point.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

START

Set this keyword to an integer representing the point to start with, counting from 0.
The default is START = 0.

NUMBER

Set this keyword to an integer representing the number of element points to return.
The default is NUMBER = (N - START), where N is the total number of element
points in the selection.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5S_GET_SELECT_ELEM_POINTLIST

264 Chapter 3: New IDL Routines
See Also

H5S_GET_SELECT_ELEM_NPOINTS, H5S_GET_SELECT_NPOINTS
H5S_GET_SELECT_ELEM_POINTLIST What’s New in IDL 5.6

Chapter 3: New IDL Routines 265
H5S_GET_SELECT_HYPER_BLOCKLIST

The H5S_GET_SELECT_HYPER_BLOCKLIST function returns a list of the
hyperslab blocks in the current dataspace selection.

Syntax

Result = H5S_GET_SELECT_HYPER_BLOCKLIST(Dataspace_id
[, START=value] [, NUMBER=value])

Return Value

Returns an (m x 2n) array, where m is the number of dimensions (or rank) of the
dataspace. The 2n rows of Result contain the list of blocks. The first row contains the
start coordinates of the first block, followed by the next row which contains the
opposite corner coordinates, followed by the next row which contains the start
coordinates of the second block, etc.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

START

Set this keyword to an integer representing the block to start with, counting from 0.
The default is START = 0.

NUMBER

Set this keyword to an integer representing the number of blocks to return. The
default is NUMBER = (N - START), where N is the total number of blocks in the
selection.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5S_GET_SELECT_HYPER_BLOCKLIST

266 Chapter 3: New IDL Routines
See Also

H5S_GET_SELECT_HYPER_NBLOCKS, H5S_GET_SELECT_NPOINTS
H5S_GET_SELECT_HYPER_BLOCKLIST What’s New in IDL 5.6

Chapter 3: New IDL Routines 267
H5S_GET_SELECT_HYPER_NBLOCKS

The H5S_GET_SELECT_HYPER_NBLOCKS function determines the number of
hyperslab blocks in the current dataspace selection.

Syntax

Result = H5S_GET_SELECT_HYPER_NBLOCKS(Dataspace_id)

Return Value

Returns an integer representing the number of blocks.

Arguments

Dataspace_id

An integer representing the dataspace identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_BOUNDS, H5S_GET_SELECT_ELEM_NPOINTS,
H5S_GET_SELECT_NPOINTS, H5S_GET_SIMPLE_EXTENT_NPOINTS
What’s New in IDL 5.6 H5S_GET_SELECT_HYPER_NBLOCKS

268 Chapter 3: New IDL Routines
H5S_GET_SELECT_NPOINTS

The H5S_GET_SELECT_NPOINTS function determines the number of elements in
a dataspace selection.

Syntax

Result = H5S_GET_SELECT_NPOINTS(Dataspace_id)

Return Value

Returns an integer representing the number of elements.

Arguments

Dataspace_id

An integer representing the dataspace identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_BOUNDS, H5S_GET_SELECT_ELEM_NPOINTS,
H5S_GET_SELECT_HYPER_NBLOCKS,
H5S_GET_SIMPLE_EXTENT_NPOINTS
H5S_GET_SELECT_NPOINTS What’s New in IDL 5.6

Chapter 3: New IDL Routines 269
H5S_GET_SIMPLE_EXTENT_DIMS

The H5S_GET_SIMPLE_EXTENT_DIMS function returns the dimension sizes for a
dataspace.

Syntax

Result = H5S_GET_SIMPLE_EXTENT_DIMS(Dataspace_id
[, MAX_DIMENSIONS=variable])

Return Value

Returns a vector containing the dimension sizes.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

MAX_DIMENSIONS

Set this keyword to a named variable to return the maximum dimension sizes for the
dataspace.

Version History

Introduced 5.6

See Also

H5S_GET_SIMPLE_EXTENT_NDIMS,
H5S_GET_SIMPLE_EXTENT_NPOINTS, H5S_GET_SIMPLE_EXTENT_TYPE
What’s New in IDL 5.6 H5S_GET_SIMPLE_EXTENT_DIMS

270 Chapter 3: New IDL Routines
H5S_GET_SIMPLE_EXTENT_NDIMS

The H5S_GET_SIMPLE_EXTENT_NDIMS function determines the number of
dimensions (or rank) of a dataspace.

Syntax

Result = H5S_GET_SIMPLE_EXTENT_NDIMS(Dataspace_id)

Return Value

Returns an integer representing the number of dimensions.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SIMPLE_EXTENT_DIMS, H5S_GET_SIMPLE_EXTENT_NPOINTS,
H5S_GET_SIMPLE_EXTENT_TYPE
H5S_GET_SIMPLE_EXTENT_NDIMS What’s New in IDL 5.6

Chapter 3: New IDL Routines 271
H5S_GET_SIMPLE_EXTENT_NPOINTS

The H5S_GET_SIMPLE_EXTENT_NPOINTS function determines the number of
elements in a dataspace.

Syntax

Result = H5S_GET_SIMPLE_EXTENT_NPOINTS(Dataspace_id)

Return Value

Returns an integer representing the number of elements.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SIMPLE_EXTENT_DIMS, H5S_GET_SIMPLE_EXTENT_NDIMS,
H5S_GET_SIMPLE_EXTENT_TYPE
What’s New in IDL 5.6 H5S_GET_SIMPLE_EXTENT_NPOINTS

272 Chapter 3: New IDL Routines
H5S_GET_SIMPLE_EXTENT_TYPE

The H5S_GET_SIMPLE_EXTENT_TYPE function returns the current class of a
dataspace.

Syntax

Result = H5S_GET_SIMPLE_EXTENT_TYPE(Dataspace_id)

Return Value

Returns a string containing the class. Possible values are:

• ‘H5S_SCALAR’

• ‘H5S_SIMPLE’

• ‘H5S_COMPLEX’

• ‘H5S_NO_CLASS’

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SIMPLE_EXTENT_DIMS, H5S_GET_SIMPLE_EXTENT_NDIMS,
H5S_GET_SIMPLE_EXTENT_NPOINTS
H5S_GET_SIMPLE_EXTENT_TYPE What’s New in IDL 5.6

Chapter 3: New IDL Routines 273
H5S_IS_SIMPLE

The H5S_IS_SIMPLE function determines whether a dataspace is a simple
dataspace.

Syntax

Result = H5S_IS_SIMPLE(Dataspace_id)

Return Value

Returns an integer of 1 if the dataspace is simple and 0 if it is not.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5S_IS_SIMPLE

274 Chapter 3: New IDL Routines
H5S_OFFSET_SIMPLE

The H5S_OFFSET_SIMPLE procedure sets the selection offset for a simple
dataspace. The offset allows the same shaped selection to be moved to different
locations within the dataspace.

Syntax

H5S_OFFSET_SIMPLE, Dataspace_id, Offset

Arguments

Dataspace_id

An integer representing the dataspace’s identifier on which to set the selection offset.

Offset

An m-element vector of integers, where m is the number of dataspace dimensions,
containing the offsets.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_BOUNDS, H5S_SELECT_ELEMENTS,
H5S_SELECT_HYPERSLAB
H5S_OFFSET_SIMPLE What’s New in IDL 5.6

Chapter 3: New IDL Routines 275
H5S_SELECT_ALL

The H5S_SELECT_ALL procedure selects the entire extent of a dataspace.

Syntax

H5S_SELECT_ALL, Dataspace_id

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be selected.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_NPOINTS, H5S_SELECT_ELEMENTS,
H5S_SELECT_HYPERSLAB, H5S_SELECT_NONE
What’s New in IDL 5.6 H5S_SELECT_ALL

276 Chapter 3: New IDL Routines
H5S_SELECT_ELEMENTS

The H5S_SELECT_ELEMENTS procedure selects array elements to be included in
the selection for a dataspace.

Syntax

H5S_SELECT_ELEMENTS, Dataspace_id, Coordinates, /RESET

Arguments

Dataspace_id

An integer representing the dataspace’s identifier on which to set the selection.

Coordinates

An m-element vector, or an (m x n) array, where m is the number of dimensions (or
rank) of the dataspace, and n is the number of selected points. Each row contains the
coordinates for an element selection point.

Keywords

RESET

Set this keyword to replace the existing selection with the new Coordinates. The
default is RESET = 0 which adds the new selection to the existing selection.

Note
The RESET keyword must be set (/RESET or RESET = 1) or the
H5S_SELECT_ELEMENTS routine will result in an error message. This error
message comes from the HDF5 library, which forces a default of RESET = 0 but
insists on this keyword being set for this routine to work.

Version History

Introduced 5.6
H5S_SELECT_ELEMENTS What’s New in IDL 5.6

Chapter 3: New IDL Routines 277
See Also

H5S_GET_SELECT_ELEM_NPOINTS,
H5S_GET_SELECT_ELEM_POINTLIST, H5S_GET_SELECT_NPOINTS,
H5S_SELECT_HYPERSLAB
What’s New in IDL 5.6 H5S_SELECT_ELEMENTS

278 Chapter 3: New IDL Routines
H5S_SELECT_HYPERSLAB

The H5S_SELECT_HYPERSLAB procedure selects a hyperslab region to be
included in the selection for a dataspace.

Note
If all of the elements in the selected hyperslab region are already selected, then a
new hyperslab region is not created.

Syntax

H5S_SELECT_HYPERSLAB, Dataspace_id, Start, Count, [, BLOCK=vector]
[, /RESET] [, STRIDE=vector]

Arguments

Dataspace_id

An integer representing the dataspace’s identifier on which to set the selection.

Start

An m-element vector of integers, where m is the number of dataspace dimensions,
containing the starting location for the hyperslab.

Count

An m-element vector of integers containing the number of blocks to select in each
dimension.

Keywords

BLOCK

Set this keyword to an m-element vector of integers containing the size of a block.
The default is a single element in each dimension (for example BLOCK is set to a
vector of all 1's).

RESET

Set this keyword to replace the existing selection with the new selection. The default
is RESET=0 which adds the new selection to the existing selection.
H5S_SELECT_HYPERSLAB What’s New in IDL 5.6

Chapter 3: New IDL Routines 279
STRIDE

Set this keyword to an m-element vector of integers containing the number of
elements to move in each dimension when selecting blocks. The default is to move a
single element in each dimension (for example STRIDE is set to a vector of all 1's).
STRIDE values must be greater than zero.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_HYPER_BLOCKLIST,
H5S_GET_SELECT_HYPER_NBLOCKS, H5S_GET_SELECT_NPOINTS,
H5S_SELECT_ELEMENTS
What’s New in IDL 5.6 H5S_SELECT_HYPERSLAB

280 Chapter 3: New IDL Routines
H5S_SELECT_NONE

The H5S_SELECT_NONE procedure resets the dataspace selection region to include
no elements.

Syntax

H5S_SELECT_NONE, Dataspace_id

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be reset.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_NPOINTS, H5S_SELECT_ALL,
H5S_SELECT_ELEMENTS, H5S_SELECT_HYPERSLAB
H5S_SELECT_NONE What’s New in IDL 5.6

Chapter 3: New IDL Routines 281
H5S_SELECT_VALID

The H5S_SELECT_VALID function verifies that the selection is within the extent of
a dataspace.

Syntax

Result = H5S_SELECT_VALID(Dataspace_id)

Return Value

Returns an integer of 1 if the selection is within the dataspace and 0 if it is not.

Arguments

Dataspace_id

An integer representing the dataspace’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5S_GET_SELECT_NPOINTS, H5S_SELECT_ELEMENTS,
H5S_SELECT_HYPERSLAB
What’s New in IDL 5.6 H5S_SELECT_VALID

282 Chapter 3: New IDL Routines
H5T_CLOSE

The H5T_CLOSE procedure releases the specified datatype’s identifier and releases
resources used by it. After this routine is used, the datatype’s identifier is no longer
available until the H5T_OPEN routine is used again to specify that datatype.

Syntax

H5T_CLOSE, Datatype_id

Arguments

Datatype_id

An integer representing the datatype’s identifier to be closed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_OPEN
H5T_CLOSE What’s New in IDL 5.6

Chapter 3: New IDL Routines 283
H5T_COMMITTED

The H5T_COMMITTED function determines whether a datatype is a named
datatype or a transient type.

Syntax

Result = H5T_COMMITTED(Datatype_id)

Return Value

Returns an integer of 1 if the datatype is named and 0 if the datatype is transient.

Arguments

Datatype_id

An integer representing the datatyped identifier to be queried.

Keywords

None.

Version History

Introduced 5.6
What’s New in IDL 5.6 H5T_COMMITTED

284 Chapter 3: New IDL Routines
H5T_COPY

The H5T_COPY function copies an existing datatype. The returned type is transient
and unlocked.

Syntax

Result = H5T_COPY(Datatype_id)

Return Value

Returns an integer representing the datatype’s identifier number. This identifier can
be released with the H5T_CLOSE procedure.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be copied.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_CLOSE, H5T_OPEN
H5T_COPY What’s New in IDL 5.6

Chapter 3: New IDL Routines 285
H5T_EQUAL

The H5T_EQUAL function determines whether two datatype identifiers refer to the
same datatype.

Syntax

Result = H5T_EQUAL(Datatype_id1, Datatype_id2)

Return Value

Returns an integer of 1 if the identifiers refer to the same datatype and 0 if they do
not.

Arguments

Datatype_id1

An integer representing the first datatype identifier.

Datatype_id2

An integer representing the second datatype identifier.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_COPY
What’s New in IDL 5.6 H5T_EQUAL

286 Chapter 3: New IDL Routines
H5T_GET_ARRAY_DIMS

The H5T_GET_ARRAY_DIMS function returns the dimension sizes for an array
datatype object.

Syntax

Result = H5T_GET_ARRAY_DIMS(Datatype_id [, PERMUTATIONS=variable])

Return Value

Returns a vector containing the dimension sizes.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

PERMUTATIONS

Set this keyword to a named variable in which to return the dimension permutations
(C versus FORTRAN).

Version History

Introduced 5.6

See Also

H5T_GET_ARRAY_NDIMS
H5T_GET_ARRAY_DIMS What’s New in IDL 5.6

Chapter 3: New IDL Routines 287
H5T_GET_ARRAY_NDIMS

The H5T_GET_ARRAY_NDIMS function determines the number of dimensions (or
rank) of an array datatype object.

Syntax

Result = H5T_GET_ARRAY_NDIMS(Datatype_id)

Return Value

Returns an integer representing the number of dimensions.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_ARRAY_DIMS
What’s New in IDL 5.6 H5T_GET_ARRAY_NDIMS

288 Chapter 3: New IDL Routines
H5T_GET_CLASS

The H5T_GET_CLASS function returns the datatype’s class.

Syntax

Result = H5T_GET_CLASS(Datatype_id)

Return Value

Returns a string containing the datatype’s class. Possible return values include:

• ‘H5T_INTEGER’

• ‘H5T_FLOAT’

• ‘H5T_TIME’

• ‘H5T_STRING’

• ‘H5T_BITFIELD’

• ‘H5T_OPAQUE’

• ‘H5T_COMPOUND’

• ‘H5T_REFERENCE’

• ‘H5T_ENUM’

• ‘H5T_VLEN’

• ‘H5T_ARRAY’

• ‘H5T_NO_CLASS’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.
H5T_GET_CLASS What’s New in IDL 5.6

Chapter 3: New IDL Routines 289
Version History

Introduced 5.6

See Also

H5T_GET_SIZE, H5T_GET_SUPER
What’s New in IDL 5.6 H5T_GET_CLASS

290 Chapter 3: New IDL Routines
H5T_GET_CSET

The H5T_GET_CSET function returns the character set type of a string datatype.

Syntax

Result = H5T_GET_CSET(Datatype_id)

Return Value

Returns a string containing the character set type. Possible values are:

• ‘ASCII’ — US ASCII

• ‘ERROR’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6
H5T_GET_CSET What’s New in IDL 5.6

Chapter 3: New IDL Routines 291
H5T_GET_EBIAS

The H5T_GET_EBIAS function returns the exponent bias of a floating-point type.

Syntax

Result = H5T_GET_EBIAS(Datatype_id)

Return Value

Returns an integer representing the exponent bias.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_FIELDS
What’s New in IDL 5.6 H5T_GET_EBIAS

292 Chapter 3: New IDL Routines
H5T_GET_FIELDS

The H5T_GET_FIELDS function retrieves information about the positions and sizes
of bit fields within a floating-point datatype.

Syntax

Result = H5T_GET_FIELDS(Datatype_id)

Return Value

Returns a structure named H5T_GET_FIELDS containing the following tags:

TYPE_ID

The datatype’s identifier Datatype_id.

SIGN_POS

The position of the floating-point sign bit.

EXP_POS

The bit position of the exponent.

EXP_SIZE

The size of the exponent in bits.

MAN_POS

The bit position of the mantissa.

MAN_SIZE

The size of the mantissa in bits.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.
H5T_GET_FIELDS What’s New in IDL 5.6

Chapter 3: New IDL Routines 293
Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_EBIAS, H5T_GET_INPAD, H5T_GET_NORM, H5T_GET_OFFSET,
H5T_GET_ORDER, H5T_GET_PAD, H5T_GET_PRECISION
What’s New in IDL 5.6 H5T_GET_FIELDS

294 Chapter 3: New IDL Routines
H5T_GET_INPAD

The H5T_GET_INPAD function returns the padding method for unused internal bits
within a floating-point datatype.

Syntax

Result = H5T_GET_INPAD(Datatype_id)

Return Value

Returns an integer representing the padding method. Possible values are:

• 0 — Background set to zeroes

• 1 — Background set to ones

• 2 — Background left unchanged

Arguments

Datatype_id

An integer representing the datatype identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_FIELDS
H5T_GET_INPAD What’s New in IDL 5.6

Chapter 3: New IDL Routines 295
H5T_GET_MEMBER_CLASS

The H5T_GET_MEMBER_CLASS function returns the datatype class of a
compound datatype member.

Syntax

Result = H5T_GET_MEMBER_CLASS(Datatype_id, Member)

Return Value

Returns a string containing the datatype class. Possible values are:

• ‘H5T_INTEGER’

• ‘H5T_FLOAT’

• ‘H5T_TIME’

• ‘H5T_STRING’

• ‘H5T_BITFIELD’

• ‘H5T_OPAQUE’

• ‘H5T_COMPOUND’

• ‘H5T_REFERENCE’

• ‘H5T_ENUM’

• ‘H5T_VLEN’

• ‘H5T_ARRAY’

• ‘H5T_NO_CLASS’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Member

An integer representing the member index, starting at zero.
What’s New in IDL 5.6 H5T_GET_MEMBER_CLASS

296 Chapter 3: New IDL Routines
Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_MEMBER_NAME, H5T_GET_MEMBER_OFFSET,
H5T_GET_MEMBER_TYPE, H5T_GET_NMEMBERS
H5T_GET_MEMBER_CLASS What’s New in IDL 5.6

Chapter 3: New IDL Routines 297
H5T_GET_MEMBER_NAME

The H5T_GET_MEMBER_NAME function returns the datatype name of a
compound datatype member.

Syntax

Result = H5T_GET_MEMBER_NAME(Datatype_id, Member)

Return Value

Returns a string containing the datatype name.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Member

An integer representing the member index, starting at zero.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_OFFSET,
H5T_GET_MEMBER_TYPE, H5T_GET_NMEMBERS
What’s New in IDL 5.6 H5T_GET_MEMBER_NAME

298 Chapter 3: New IDL Routines
H5T_GET_MEMBER_OFFSET

The H5T_GET_MEMBER_OFFSET function returns the byte offset of a field within
a compound datatype.

Syntax

Result = H5T_GET_MEMBER_OFFSET(Datatype_id, Member)

Return Value

Returns an integer representing the byte offset.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Member

An integer representing the member index, starting at zero.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_NAME,
H5T_GET_MEMBER_TYPE, H5T_GET_NMEMBERS
H5T_GET_MEMBER_OFFSET What’s New in IDL 5.6

Chapter 3: New IDL Routines 299
H5T_GET_MEMBER_TYPE

The H5T_GET_MEMBER_TYPE function returns the datatype identifier for a
specified member within a compound datatype.

Syntax

Result = H5T_GET_MEMBER_TYPE(Datatype_id, Member)

Return Value

Returns an integer representing the datatype identifier. This identifier should be
closed using H5T_CLOSE.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Member

An integer representing the member index, starting at zero.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_NAME,
H5T_GET_MEMBER_OFFSET, H5T_CLOSE, H5T_GET_NMEMBERS
What’s New in IDL 5.6 H5T_GET_MEMBER_TYPE

300 Chapter 3: New IDL Routines
H5T_GET_NMEMBERS

The H5T_GET_NMEMBERS function returns the number of fields in a compound
datatype.

Syntax

Result = H5T_GET_NMEMBERS(Datatype_id)

Return Value

Returns an integer representing the number of fields.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_NAME,
H5T_GET_MEMBER_OFFSET, H5T_GET_MEMBER_TYPE
H5T_GET_NMEMBERS What’s New in IDL 5.6

Chapter 3: New IDL Routines 301
H5T_GET_NORM

The H5T_GET_NORM function returns the mantissa normalization of a floating-
point datatype.

Syntax

Result = H5T_GET_NORM(Datatype_id)

Return Value

Returns a string containing the mantissa normalization. Possible values are:

• ‘IMPLIED’ — Most-significant bit of mantissa not stored, always 1

• ‘MSBSET’ — Most-significant bit of mantissa is always 1

• ‘NORM’ — Mantissa is not normalized

• ‘ERROR’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_FIELDS
What’s New in IDL 5.6 H5T_GET_NORM

302 Chapter 3: New IDL Routines
H5T_GET_OFFSET

The H5T_GET_OFFSET function returns the bit offset of the first significant bit in
an atomic datatype. The offset is the number of bits of padding that follows the
significant bits (for big endian) or precedes the significant bits (for little endian).

Syntax

Result = H5T_GET_OFFSET(Datatype_id)

Return Value

Returns an integer representing the bit offset.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_FIELDS
H5T_GET_OFFSET What’s New in IDL 5.6

Chapter 3: New IDL Routines 303
H5T_GET_ORDER

The H5T_GET_ORDER function returns the byte order of an atomic datatype.

Syntax

Result = H5T_GET_ORDER(Datatype_id)

Return Value

Returns a string representing the byte order. Possible values are:

• ‘LE’ — Little endian

• ‘BE’ — Big endian

• ‘VAX’ — VAX mixed ordering

• ‘NONE’

• ‘ERROR’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_INPAD, H5T_GET_PAD, H5T_GET_PRECISION
What’s New in IDL 5.6 H5T_GET_ORDER

304 Chapter 3: New IDL Routines
H5T_GET_PAD

The H5T_GET_PAD function returns the padding method of the least significant bit
(lsb) and most significant bit (msb) of an atomic datatype.

Syntax

Result = H5T_GET_PAD(Datatype_id)

Return Value

Returns a two-element vector [lsb, msb]. Possible values are:

• 0 — Background set to zeroes

• 1 — Background set to ones

• 2 — Background left unchanged.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_INPAD, H5T_GET_ORDER, H5T_GET_PRECISION
H5T_GET_PAD What’s New in IDL 5.6

Chapter 3: New IDL Routines 305
H5T_GET_PRECISION

The H5T_GET_PRECISION function returns the precision in bits of an atomic
datatype. The precision is the number of significant bits which, unless padded, is 8
times larger than the byte size from H5T_GET_CSET.

Syntax

Result = H5T_GET_PRECISION(Datatype_id)

Return Value

Returns an integer representing the bit precision.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_INPAD, H5T_GET_ORDER, H5T_GET_PAD, H5T_GET_SIZE
What’s New in IDL 5.6 H5T_GET_PRECISION

306 Chapter 3: New IDL Routines
H5T_GET_SIGN

The H5T_GET_SIGN function returns the sign type for an integer datatype.

Syntax

Result = H5T_GET_SIGN(Datatype_id)

Return Value

Returns an integer representing the sign type. Possible values are:

• -1 — Error

• 0 — Unsigned integer type

• 1 — Two's complement signed integer type

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_ORDER, H5T_GET_PAD, H5T_GET_PRECISION
H5T_GET_SIGN What’s New in IDL 5.6

Chapter 3: New IDL Routines 307
H5T_GET_SIZE

The H5T_GET_SIZE function returns the size of a datatype in bytes.

Syntax

Result = H5T_GET_SIZE(Datatype_id)

Return Value

Returns an integer representing the datatype’s size.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_CLASS, H5T_GET_SUPER
What’s New in IDL 5.6 H5T_GET_SIZE

308 Chapter 3: New IDL Routines
H5T_GET_STRPAD

The H5T_GET_STRPAD function returns the padding method for a string datatype.

Syntax

Result = H5T_GET_STRPAD(Datatype_id)

Return Value

Returns a string containing the padding method. Possible values are:

• ‘NULLTERM’ — Null terminate (like C)

• ‘NULLPAD’ — Pad with zeroes

• ‘SPACEPAD’ — Pad with spaces (like FORTRAN)

• ‘ERROR’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_CSET, H5T_GET_SIZE
H5T_GET_STRPAD What’s New in IDL 5.6

Chapter 3: New IDL Routines 309
H5T_GET_SUPER

The H5T_GET_SUPER function returns the base datatype from which a datatype is
derived.

Syntax

Result = H5T_GET_SUPER(Datatype_id)

Return Value

Returns an integer representing the base datatype’s identifier number. This identifier
can be released with the H5T_CLOSE.

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_CLASS, H5T_GET_SIZE
What’s New in IDL 5.6 H5T_GET_SUPER

310 Chapter 3: New IDL Routines
H5T_IDLTYPE

The H5T_IDLTYPE function returns the IDL type code corresponding to a datatype.

Note
This function is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax

Result = H5T_IDLTYPE(Datatype_id
[, ARRAY_DIMENSIONS=variable][, STRUCTURE=variable])

Return Value

The Result is an integer giving the IDL type code.

Note
For a list of IDL type codes and their definitions, see “IDL Type Codes” in the IDL
Reference Guide manual under the SIZE function.

Arguments

Datatype_id

An integer giving the datatype identifier for which to return the IDL type code.

Keywords

ARRAY_DIMENSIONS

Set this keyword to a named variable in which to return a vector containing the array
dimensions, if the datatype is an array. If the datatype is not an array, then a scalar
value of 0 is returned.

STRUCTURE

Set this keyword to a named variable in which to return the IDL structure definition,
if the datatype is a compound datatype. If the datatype is not compound, then a scalar
value of 0 is returned.
H5T_IDLTYPE What’s New in IDL 5.6

Chapter 3: New IDL Routines 311
Version History

Introduced 5.6

See Also

H5T_MEMTYPE
What’s New in IDL 5.6 H5T_IDLTYPE

312 Chapter 3: New IDL Routines
H5T_MEMTYPE

The H5T_MEMTYPE function returns the native memory datatype corresponding to
a file datatype.

Note
This function is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax

Result = H5T_MEMTYPE(Datatype_id)

Return Value

The Result is an integer giving the datatype identifier. If the file datatype is not
immutable, then the memory datatype identifier should be closed using
H5T_CLOSE.

Note
For a list of IDL type codes and their definitions, see “IDL Type Codes” in the IDL
Reference Guide manual under the SIZE function.

Arguments

Datatype_id

An integer giving the file datatype identifier for which to return the memory datatype.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_IDLTYPE
H5T_MEMTYPE What’s New in IDL 5.6

Chapter 3: New IDL Routines 313
H5T_OPEN

The H5T_OPEN function opens a named datatype.

Syntax

Result = H5T_OPEN(Loc_id, Name)

Return Value

Returns an integer representing the datatype’s identifier number. This identifier can
be released with the H5T_CLOSE.

Arguments

Loc_id

An integer representing the identifier of the file or group containing the datatype.

Name

A string representing the name of the datatype to be accessed.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_CLOSE
What’s New in IDL 5.6 H5T_OPEN

314 Chapter 3: New IDL Routines
LA_CHOLDC

The LA_CHOLDC procedure computes the Cholesky factorization of an n-by-n
symmetric (or Hermitian) positive-definite array as:

If A is real: A = UT U or A = L LT

If A is complex: A = UH U or A = L LH

where U and L are upper and lower triangular arrays. The T represents the transpose
while H represents the Hermitian, or transpose complex conjugate.

LA_CHOLDC is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_CHOLDC, Array [, /DOUBLE] [, STATUS=variable] [, /UPPER]

Arguments

Array

A named variable containing the real or complex array to be factorized. Only the
lower triangular portion of Array is used (or upper if the UPPER keyword is set).
This procedure returns Array as a lower triangular array from the Cholesky
decomposition (upper triangular if the UPPER keyword is set).

Output Type LAPACK Routine

Float spotrf

Double dpotrf

Complex cpotrf

Double complex zpotrf

Table 3-7: LAPACK Routine Basis for LA_CHOLDC
LA_CHOLDC What’s New in IDL 5.6

Chapter 3: New IDL Routines 315
Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The array is not positive definite and the factorization could not
be completed. The STATUS value specifies the order of the leading minor
which is not positive definite.

Note
If STATUS is not specified, any error messages will output to the screen.

UPPER

If this keyword is set, then only the upper triangular portion of Array is used, and the
upper triangular array is returned. The default is to use the lower triangular portion
and to return the lower triangular array.

Examples

The following example program computes the Cholesky decomposition of a given
symmetric positive-definite array:

PRO ExLA_CHOLDC
; Create a symmetric positive-definite array.
n = 10
seed = 12321
array = RANDOMU(seed, n, n)
array = array ## TRANSPOSE(Array)

; Compute the Cholesky decomposition.
lower = array ; make a copy
LA_CHOLDC, lower
What’s New in IDL 5.6 LA_CHOLDC

316 Chapter 3: New IDL Routines
; Zero out the upper triangular portion.
for i = 0,n - 2 Do lower[i+1:*,i] = 0

; Reconstruct the array and check the difference
arecon = lower ## TRANSPOSE(lower)
PRINT, 'LA_CHOLDC Error:', MAX(ABS(arecon - array))
END

When this program is compiled and run, IDL prints:

LA_CHOLDC Error:
4.76837e-007

Version History

Introduced 5.6

See Also

CHOLDC, LA_CHOLMPROVE, LA_CHOLSOL
LA_CHOLDC What’s New in IDL 5.6

Chapter 3: New IDL Routines 317
LA_CHOLMPROVE

The LA_CHOLMPROVE function uses Cholesky factorization to improve the
solution to a system of linear equations, AX = B (where A is symmetric or Hermitian),
and provides optional error bounds and backward error estimates.

The LA_CHOLMPROVE function may also be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, the result is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_CHOLMPROVE is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_CHOLMPROVE(Array, Achol, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD_ERROR=variable] [, /UPPER])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

Array

The original n-by-n array of the linear system AX = B.

Output Type LAPACK Routine

Float sporfs

Double dporfs

Complex cporfs

Double complex zporfs

Table 3-8: LAPACK Routine Basis for LA_CHOLMPROVE
What’s New in IDL 5.6 LA_CHOLMPROVE

318 Chapter 3: New IDL Routines
Achol

The n-by-n Cholesky factorization of Array, created by the LA_CHOLDC procedure.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or a k-by-n array, containing the approximate solutions to
the linear system, created by the LA_CHOLSOL function.

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

UPPER

Set this keyword if A contains the upper (rather than lower) triangular array.
LA_CHOLMPROVE What’s New in IDL 5.6

Chapter 3: New IDL Routines 319
Note
If the UPPER keyword is set in LA_CHOLDC and LA_CHOLSOL then the
UPPER keyword must also be set in LA_CHOLMPROVE.

Examples

The following example program computes an improved solution to a set of 10
equations:

PRO ExLA_CHOLMPROVE
; Create a symmetric positive-definite array.
n = 10
seed = 12321
a = RANDOMU(seed, n, n, /DOUBLE)
a = a ## TRANSPOSE(a)

; Create the right-hand side vector b:
b = RANDOMU(seed, n, /DOUBLE)

; Compute the Cholesky decomposition.
achol = a ; make a copy
LA_CHOLDC, achol

; Compute the first approximation to the solution:
x = LA_CHOLSOL(achol, b)

; Improve the solution and print the error estimate:
xmprove = LA_CHOLMPROVE(a, achol, b, x, $

FORWARD_ERROR = fError)
PRINT, 'LA_CHOLMPROVE error:', $

MAX(ABS(a ## xmprove - b))
PRINT, 'LA_CHOLMPROVE Error Estimate:', fError
END

When this program is compiled and run, IDL prints:

LA_CHOLMPROVE error: 3.9412917e-15
LA_CHOLMPROVE error estimate: 5.1265892e-12

Version History

Introduced 5.6

See Also

LA_CHOLDC, LA_CHOLSOL
What’s New in IDL 5.6 LA_CHOLMPROVE

320 Chapter 3: New IDL Routines
LA_CHOLSOL

The LA_CHOLSOL function is used in conjunction with the LA_CHOLDC to solve
a set of n linear equations in n unknowns, AX = B, where A must be a symmetric (or
Hermitian) positive-definite array. The parameter A is input not as the original array,
but as its Cholesky decomposition, created by the routine LA_CHOLDC.

The LA_CHOLSOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, the result is a k-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_CHOLSOL is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_CHOLSOL(A, B [, /DOUBLE] [, /UPPER])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

A

The n-by-n Cholesky factorization of an array, created by the LA_CHOLDC
procedure.

Output Type LAPACK Routine

Float spotrs

Double dpotrs

Complex cpotrs

Double complex zpotrs

Table 3-9: LAPACK Routine Basis for LA_CHOLSOL
LA_CHOLSOL What’s New in IDL 5.6

Chapter 3: New IDL Routines 321
B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

UPPER

Set this keyword if A contains the upper triangular array, rather than the lower
triangular array.

Note
If the UPPER keyword is set in the LA_CHOLDC then the UPPER keyword must
also be set in LA_CHOLSOL.

Examples

Given the following system of equations:

6u + 15v + 55w = 9.5

15u + 55v + 225w = 50

55u + 225v + 979w = 237

The solution can be derived by using the following program:

PRO ExLA_CHOLSOL
; Define the coefficient array:
a = [[6.0, 15.0, 55.0], $

[15.0, 55.0, 225.0], $
[55.0, 225.0, 979.0]]

; Define the right-hand side vector b:
b = [9.5, 50.0, 237.0]

; Compute the Cholesky decomposition of a:
achol = a ; make a copy
What’s New in IDL 5.6 LA_CHOLSOL

322 Chapter 3: New IDL Routines
LA_CHOLDC, achol

; Compute and print the solution:
x = LA_CHOLSOL(achol, b)
PRINT, 'LA_CHOLSOL solution:', x
END

When this program is compiled and run, IDL prints:

LA_CHOLSOL Solution:
-0.499999 -1.00000 0.500000

The exact solution vector is [-0.5, -1.0, 0.5].

Version History

Introduced 5.6

See Also

CHOLSOL, LA_CHOLDC, LA_CHOLMPROVE
LA_CHOLSOL What’s New in IDL 5.6

Chapter 3: New IDL Routines 323
LA_DETERM

The LA_DETERM function uses LU decomposition to compute the determinant of a
square array.

This routine is written in the IDL language. Its source code can be found in the file
la_determ.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LA_DETERM(A [, /CHECK] [, /DOUBLE] [, ZERO=value])

Return Value

The result is a scalar of the same type as the input array.

Arguments

A

An n-by-n real or complex array.

Keywords

CHECK

Set this keyword to check A for any singularities. The determinant of a singular array
is returned as zero if this keyword is set. Run-time errors may result if A is singular
and this keyword is not set.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.
What’s New in IDL 5.6 LA_DETERM

324 Chapter 3: New IDL Routines
ZERO

Use this keyword to set the absolute value of the floating-point zero. A floating-point
zero on the main diagonal of a triangular array results in a zero determinant. For
single-precision inputs, the default value is 1.0 x 10-6. For double-precision inputs,
the default value is 1.0 x 10-12. Setting this keyword to a value less than the default
may improve the precision of the result.

Examples

The following program computes the determinant of a square array:

PRO ExLA_DETERM
; Create a square array.
array =[[1d, 2, 1], $

[4, 10, 15], $
[3, 7, 1]]

; Compute the determinant.
adeterm = LA_DETERM(array)
PRINT, 'LA_DETERM:', adeterm
END

When this program is compiled and run, IDL prints:

A_DETERM:
-15.000000

Version History

Introduced 5.6

See Also

DETERM, LA_LUDC
LA_DETERM What’s New in IDL 5.6

Chapter 3: New IDL Routines 325
LA_EIGENPROBLEM

The LA_EIGENPROBLEM function uses the QR algorithm to compute all
eigenvalues λ and eigenvectors v ≠ 0 of an n-by-n real nonsymmetric or complex
non-Hermitian array A, for the eigenproblem Av = λv. The routine can also compute
the left eigenvectors u ≠ 0, which satisfy uHA = λuH.

LA_EIGENPROBLEM may also be used for the generalized eigenproblem:

Av = λBv and uHA = λuHB

where A and B are square arrays, v are the right eigenvectors, and u are the left
eigenvectors.

LA_EIGENPROBLEM is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_EIGENPROBLEM(A [, B] [, ALPHA=variable] [, BALANCE=value]
[, BETA=variable] [, /DOUBLE] [, EIGENVECTORS=variable]
[, LEFT_EIGENVECTORS=variable] [, NORM_BALANCE = variable]
[, PERMUTE_RESULT=variable] [, SCALE_RESULT=variable]
[, RCOND_VALUE=variable] [, RCOND_VECTOR=variable]
[, STATUS=variable])

Return Value

The result is a complex n-element vector containing the eigenvalues.

Output Type
Standard LAPACK

Routine
Generalized

LAPACK Routine

Float sgeevx sggevx

Double dgeevx dggevx

Complex cgeevx cggevx

Double complex zgeevx zggevx

Table 3-10: LAPACK Routine Basis for LA_EIGENPROBLEM
What’s New in IDL 5.6 LA_EIGENPROBLEM

326 Chapter 3: New IDL Routines
Arguments

A

The real or complex array for which to compute eigenvalues and eigenvectors.

B

An optional real or complex n-by-n array used for the generalized eigenproblem. The
elements of B are converted to the same type as A before computation.

Keywords

ALPHA

For the generalized eigenproblem with the B argument, set this keyword to a named
variable in which the numerator of the eigenvalues will be returned as a complex n -
element vector. For the standard eigenproblem this keyword is ignored.

Tip
The ALPHA and BETA values are useful for eigenvalues which underflow or
overflow. In this case the eigenvalue problem may be rewritten as αAv = βBv.

BALANCE

Set this keyword to one of the following values:

• BALANCE = 0: No balancing is applied to A.

• BALANCE = 1: Both permutation and scale balancing are performed.

• BALANCE = 2: Permutations are performed to make the array more nearly
upper triangular.

• BALANCE = 3: Diagonally scale the array to make the columns and rows
more equal in norm.

The default is BALANCE = 1, which performs both permutation and scaling
balances. Balancing a nonsymmetric (or non-Hermitian) array is recommended to
reduce the sensitivity of eigenvalues to rounding errors.
LA_EIGENPROBLEM What’s New in IDL 5.6

Chapter 3: New IDL Routines 327
BETA

For the generalized eigenproblem with the B argument, set this keyword to a named
variable in which the denominator of the eigenvalues will be returned as a real or
complex n-element vector. For the standard eigenproblem this keyword is ignored.

Tip
The ALPHA and BETA values are useful for eigenvalues which underflow or
overflow. In this case, the eigenvalue problem may be rewritten as αAv = βBv.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

EIGENVECTORS

Set this keyword to a named variable in which the eigenvectors will be returned as a
set of row vectors. If this variable is omitted then eigenvectors will not be computed
unless the RCOND_VALUE or RCOND_VECTOR keywords are present.

Note
For the standard eigenproblem the eigenvectors are normalized and rotated to have
norm 1 and largest component real. For the generalized eigenproblem the
eigenvectors are normalized so that the largest component has abs(real) +
abs(imaginary) = 1.

LEFT_EIGENVECTORS

Set this keyword to a named variable in which the left eigenvectors will be returned
as a set of row vectors. If this variable is omitted then left eigenvectors will not be
computed unless the RCOND_VALUE or RCOND_VECTOR keywords are present.

Note
Note - For the standard eigenproblem the eigenvectors are normalized and rotated
to have norm 1 and largest component real. For the generalized eigenproblem the
eigenvectors are normalized so that the largest component has abs(real) +
abs(imaginary) = 1.
What’s New in IDL 5.6 LA_EIGENPROBLEM

328 Chapter 3: New IDL Routines
NORM_BALANCE

Set this keyword to a named variable in which the one-norm of the balanced matrix
will be returned. The one-norm is defined as the maximum value of the sum of
absolute values of the columns. For the standard eigenproblem, this will be returned
as a scalar value; for the generalized eigenproblem this will be returned as a two-
element vector containing the A and B norms.

PERMUTE_RESULT

Set this keyword to a named variable in which the result for permutation balancing
will be returned as a two-element vector [ilo, ihi]. If permute balancing is not done
then the values will be ilo = 1 and ihi = n.

RCOND_VALUE

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvalues will be returned as an n-element vector. If RCOND_VALUE is
present then left and right eigenvectors must be computed.

RCOND_VECTOR

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvectors will be returned as an n-element vector. If RCOND_VECTOR is
present then left and right eigenvectors must be computed.

SCALE_RESULT

Set this keyword to a named variable in which the results for permute and scale
balancing will be returned. For the standard eigenproblem, this will be returned as an
n-element vector. For the generalized eigenproblem, this will be returned as a n-by-2
array with the first row containing the permute and scale factors for the left side of A
and B and the second row containing the factors for the right side of A and B.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The QR algorithm failed to compute all eigenvalues; no
eigenvectors or condition numbers were computed. The STATUS value
indicates that eigenvalues ilo:STATUS (starting at index 1) did not converge;
all other eigenvalues converged.
LA_EIGENPROBLEM What’s New in IDL 5.6

Chapter 3: New IDL Routines 329
Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

Find the eigenvalues and eigenvectors for an array using the following program:

PRO ExLA_EIGENPROBLEM
; Create a random array:
n = 4
seed = 12321
array = RANDOMN(seed, n, n)

; Compute all eigenvalues and eigenvectors:
eigenvalues = LA_EIGENPROBLEM(array, $

EIGENVECTORS = eigenvectors)
PRINT, 'LA_EIGENPROBLEM Eigenvalues:'
PRINT, eigenvalues

; Check the results using the eigenvalue equation:
maxErr = 0d
FOR i = 0, n - 1 DO BEGIN

; A*z = lambda*z
alhs = array ## eigenvectors[*,i]
arhs = eigenvalues[i]*eigenvectors[*,i]
maxErr = maxErr > MAX(ABS(alhs - arhs))

ENDFOR
PRINT, 'LA_EIGENPROBLEM Error:', maxErr

; Now try the generalized eigenproblem:
b = IDENTITY(n) + 0.01*RANDOMN(seed, n, n)
eigenvalues = LA_EIGENPROBLEM(Array, B)
PRINT, 'LA_EIGENPROBLEM Generalized Eigenvalues:'
PRINT, EIGENVALUES
END

When this program is compiled and run, IDL prints:

LA_EIGENPROBLEM eigenvalues:
(-0.593459, 0.566318)(-0.593459, -0.566318)
(1.06216, 0.00000)(1.61286, 0.00000)
LA_EIGENPROBLEM error: 4.0978193e-07
LA_EIGENPROBLEM generalized eigenvalues:
(-0.574766, 0.567452)(-0.574766, -0.567452)
(1.57980, 0.00000)(1.08711, 0.00000)
What’s New in IDL 5.6 LA_EIGENPROBLEM

330 Chapter 3: New IDL Routines
Version History

Introduced 5.6

See Also

LA_EIGENVEC, LA_ELMHES, LA_HQR
LA_EIGENPROBLEM What’s New in IDL 5.6

Chapter 3: New IDL Routines 331
LA_EIGENQL

The LA_EIGENQL function computes selected eigenvalues λ and eigenvectors z ≠ 0
of an n-by-n real symmetric or complex Hermitian array A, for the eigenproblem
Az = λz.

LA_EIGENQL may also be used for the generalized symmetric eigenproblems:

Az = λBz or ABz = λz or BAz = λz

where A and B are symmetric (or Hermitian) and B is positive definite.

LA_EIGENQL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_EIGENQL(A [, B] [, /DOUBLE] [, EIGENVECTORS=variable]
[, FAILED=variable] [, GENERALIZED=value] [, METHOD=value]
[, RANGE=vector] [, SEARCH_RANGE=vector] [, STATUS=variable]
[, TOLERANCE=value])

Return Value

The result is a real vector containing the eigenvalues in ascending order.

Output Type
Standard

Eigenproblem
Generalized

Float ssyevx, ssyevr, ssyevd ssygvx, ssygvd

Double dsyevx, dsyevr, dsyevd dsygvx, dsygvd

Complex cheevx, cheevr, cheevd chegvx, chegvd

Double complex zheevx, zheevr, zheevd zhegvx, zhegvd

Table 3-11: LAPACK Routine Basis for LA_EIGENQL
What’s New in IDL 5.6 LA_EIGENQL

332 Chapter 3: New IDL Routines
Arguments

A

The real or complex n-by-n array for which to compute eigenvalues and eigenvectors.
A must be symmetric (or Hermitian).

B

An optional real or complex n-by-n array used for the generalized eigenproblem. B
must be symmetric (or Hermitian) and positive definite. The elements of B are
converted to the same type as A before computation.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

EIGENVECTORS

Set this keyword to a named variable in which the eigenvectors will be returned as a
set of row vectors. If this variable is omitted then eigenvectors will not be computed.
All eigenvectors will be returned unless the RANGE or SEARCH_RANGE
keywords are used to restrict the eigenvalue range.

FAILED

Set this keyword to a named variable in which to return the indices of eigenvectors
that did not converge. This keyword is only available for METHOD = 0, and will be
ignored for other methods.

Note
Index numbers within FAILED start at 1.

GENERALIZED

For the generalized eigenproblem with the optional B argument, set this keyword to
indicate which problem to solve. Possible values are:

• GENERALIZED = 0 (the default): Solve Az = λBz.
LA_EIGENQL What’s New in IDL 5.6

Chapter 3: New IDL Routines 333
• GENERALIZED = 1: Solve ABz = λz.

• GENERALIZED = 2: Solve BAz = λz.

This keyword is ignored if argument B is not present.

METHOD

Set this keyword to indicate which computation method to use. Possible values are:

• METHOD = 0 (the default): Use tridiagonal decomposition to compute some
or all of the eigenvalues and (optionally) eigenvectors.

• METHOD = 1: Use the Relatively Robust Representation (RRR) algorithm to
compute some or all of the eigenvalues and (optionally) eigenvectors. This
method is unavailable for the generalized eigenproblem with the optional B
argument, and will default to METHOD = 0.

Note
The RRR method may produce NaN and Infinity floating-point exception messages
during normal execution.

• METHOD = 2: Use a divide-and-conquer algorithm to compute all of the
eigenvalues and (optionally) all eigenvectors. This method is available for
either the standard or generalized eigenproblems. For METHOD = 2 the
RANGE, SEARCH_RANGE, and TOLERANCE keywords are ignored, and
all eigenvalues are returned.

RANGE

Set this keyword to a two-element vector containing the indices of the smallest and
largest eigenvalues to be returned. The default is [0, n-1], which returns all
eigenvalues and eigenvectors. This keyword is ignored for METHOD = 2.

SEARCH_RANGE

Set this keyword to a two-element floating-point vector containing the lower and
upper bounds of the interval to be searched for eigenvalues. The default is to return
all eigenvalues and eigenvectors. This keyword is ignored for METHOD = 2. If both
RANGE and SEARCH_RANGE are specified, only the SEARCH_RANGE values
are used.

Note
If the search range does not contain any eigenvalues, then Result,
EIGENVECTORS, and FAILED will each be set to a scalar zero.
What’s New in IDL 5.6 LA_EIGENQL

334 Chapter 3: New IDL Routines
STATUS

Set this keyword to a named variable that will contain the status of the computation.
In all cases STATUS = 0 indicates successful computation. For the standard
eigenproblem, possible nonzero values are:

• METHOD = 0, STATUS > 0: STATUS eigenvectors failed to converge. The
FAILED keyword contains the indices of the eigenvectors that did not
converge.

• METHOD = 1, STATUS < 0 or STATUS > 0: An internal error occurred
during the computation.

• METHOD = 2, STATUS > 0: STATUS off-diagonal elements of an
intermediate tridiagonal matrix did not converge to zero.

For the generalized eigenproblem, possible nonzero values are:

• METHOD = 0, 0 < STATUS ≤ n: STATUS eigenvectors failed to converge.
The FAILED keyword contains the indices of the eigenvectors that did not
converge.

• METHOD = 0, STATUS > n: The factorization of B could not be completed
and the computation failed. The value of (STATUS - n) specifies the order of
the leading minor of B which is not positive definite.

• METHOD = 2, 0 < STATUS ≤ n: STATUS off-diagonal elements of an
intermediate tridiagonal matrix did not converge to zero.

• METHOD = 2, STATUS > n: The factorization of B could not be completed
and the computation failed. The value of (STATUS - n) specifies the order of
the leading minor of B which is not positive definite.

Note
If STATUS is not specified, any error messages will be output to the screen.

TOLERANCE

Set this keyword to a scalar giving the absolute error tolerance for the eigenvalues
and eigenvectors. For the most accurate eigenvalues, TOLERANCE should be set to
2*XMIN, where XMIN is the magnitude of the smallest usable floating-point value.
For METHOD = 0, if TOLERANCE is less than or equal to zero, or is unspecified,
then a tolerance value of EPS*||T||1 will be used, where T is the tridiagonal matrix
obtained from A. For METHOD = 1, if TOLERANCE is less than or equal to
N*EPS*||T||1, or is unspecified, then a tolerance value of N*EPS*||T||1 will be used.
LA_EIGENQL What’s New in IDL 5.6

Chapter 3: New IDL Routines 335
For values of EPS and XMIN, see the MACHAR. This keyword is ignored for
METHOD = 2.

Tip
If the LA_EIGENQL routine fails to converge, try setting the TOLERANCE to a
larger value.

Examples

Find the eigenvalues and eigenvectors for a symmetric array using the following
program:

PRO ExLA_EIGENQL
; Create a random symmetric array:
n = 10
seed = 12321
array = RANDOMN(seed, n, n)
array = array + TRANSPOSE(array)

; Compute all eigenvalues and eigenvectors:
eigenvalues = LA_EIGENQL(array, $

EIGENVECTORS=eigenvectors)

; Check the results using the eigenvalue equation:
maxErr = 0d
FOR i=0,n-1 DO BEGIN

; a*z = lambda*z
alhs = array ## eigenvectors[*,i]
arhs = eigenvalues[i]*eigenvectors[*,i]
maxErr = maxErr > MAX(ABS(alhs - arhs))

ENDFOR
PRINT, 'LA_EIGENQL error:', maxErr

; Compute the three largest eigenvalues:
eigenvalues = LA_EIGENQL(array, $

EIGENVECTORS = eigenvectors, $
RANGE = [n-3,n-1])

PRINT, 'LA_EIGENQL eigenvalues:', eigenvalues

; Now try the generalized eigenproblem:
b = IDENTITY(n) + 0.01*RANDOMN(seed,n,n)
; Make B symmetric and positive definite:
b = b ## TRANSPOSE(b)
What’s New in IDL 5.6 LA_EIGENQL

336 Chapter 3: New IDL Routines
; Compute the three largest generalized eigenvalues:
eigenvalues = LA_EIGENQL(array, b, RANGE=[n-3,n-1])
PRINT, 'LA_EIGENQL Generalized Eigenvalues:'
PRINT, Eigenvalues
END

When this program is compiled and run, IDL prints:

LA_EIGENQL error: 1.3560057e-06
LA_EIGENQL eigenvalues: 3.82993 4.69785 5.61567
LA_EIGENQL generalized eigenvalues:
3.83750 4.74803 5.57692

Version History

Introduced 5.6

See Also

EIGENQL, LA_TRIQL, LA_TRIRED
LA_EIGENQL What’s New in IDL 5.6

Chapter 3: New IDL Routines 337
LA_EIGENVEC

The LA_EIGENVEC function uses the QR algorithm to compute all or some of the
eigenvectors v ≠ 0 of an n-by-n real nonsymmetric or complex non-Hermitian array
A, for the eigenproblem Av = λv. The routine can also compute the left eigenvectors
u ≠ 0, which satisfy uHA = λuH.

Note
The left and right eigenvectors returned by LA_EIGENVEC are normalized to
norm 1. Unlike the LA_EIGENPROBLEM, they are not rotated to have largest
component real. Therefore, you may notice slight differences in results between
LA_EIGENVEC and LA_EIGENPROBLEM.

LA_EIGENVEC is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_EIGENVEC(T, QZ [, BALANCE=value] [, /DOUBLE]
[, EIGENINDEX=variable] [, LEFT_EIGENVECTORS=variable]
[, PERMUTE_RESULT=[ilo, ihi]] [, SCALE_RESULT=vector]
[, RCOND_VALUE=variable] [, RCOND_VECTOR=variable] [, SELECT=vector])

Return Value

The result is a complex array containing the eigenvectors as a set of row vectors.

Output Type Eigenvectors
Condition
Numbers

Undo
Balancing

Float strevc strsna sgebak

Double dtrevc dtrsna dgebak

Complex ctrevc ctrsna cgebak

Double complex ztrevc ztrsna zgebak

Table 3-12: LAPACK Routine Basis for LA_EIGENVEC
What’s New in IDL 5.6 LA_EIGENVEC

338 Chapter 3: New IDL Routines
Arguments

T

The upper quasi-triangular array containing the Schur form, created by LA_HQR.

QZ

The array of Schur vectors, created by LA_HQR.

Keywords

BALANCE

If balancing was applied in the call to LA_ELMHES, then set this keyword to the
same value that was used, in order to apply the backward balancing transform to the
eigenvectors. If BALANCE is not specified, then the default is BALANCE = 1.

Note
If BALANCE is not zero, then both PERMUTE_RESULT and SCALE_RESULT
must be supplied.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if T is double precision, otherwise the default is DOUBLE = 0.

EIGENINDEX

If keyword SELECT is used, then set this keyword to a named variable in which the
indices of the eigenvalues that correspond to the selected eigenvectors will be
returned. If the SELECT keyword is not used then EIGENINDEX will be set to
LINDGEN(n).

Tip
This keyword is most useful for real input arrays when the SELECT keyword is
present. In this case, a value of SELECT[j] equal to 1 may produce two
eigenvectors if the eigenvalue is part of a complex-conjugate pair.
LA_EIGENVEC What’s New in IDL 5.6

Chapter 3: New IDL Routines 339
LEFT_EIGENVECTORS

Set this keyword to a named variable in which the left eigenvectors will be returned
as a set of row vectors. If this variable is omitted then left eigenvectors will not be
computed unless the RCOND_VALUE keyword is present.

PERMUTE_RESULT

Set this keyword to a two-element vector containing the [ilo, ihi] permutation results
from the LA_ELMHES procedure. This keyword must be present if BALANCE = 1
or BALANCE = 2.

RCOND_VALUE

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvalues will be returned as an n-element vector. If RCOND_VALUE is
present then left and right eigenvectors must be computed.

RCOND_VECTOR

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvectors will be returned as an n-element vector.

SCALE_RESULT

Set this keyword to an n-element vector containing the permute and scale balancing
results from the LA_ELMHES procedure. This keyword must be present if
BALANCE is not zero.

SELECT

Set this keyword to an n-element vector of zeroes or ones that indicates which
eigenvectors to compute. There are two cases:

• The original array was real: If the j-th eigenvalue (as created by LA_HQR) is
real, then if SELECT[j] is set to 1, then the j-th eigenvector will be computed.
If the j-th and (j+1) eigenvalues form a complex-conjugate pair, then if either
SELECT[j] or SELECT[j+1] is set to 1, then the complex-conjugate pair of j-
th and (j+1) eigenvectors will be computed.

• The original array was complex: If SELECT[j] is set to 1, then the j-th
eigenvector will be computed.

If SELECT is omitted then all eigenvectors are returned.
What’s New in IDL 5.6 LA_EIGENVEC

340 Chapter 3: New IDL Routines
Examples

Compute the eigenvalues and selected eigenvectors of a random array using the
following program:

PRO ExLA_EIGENVEC
; Create a random array:
n = 10
seed = 12321
array = RANDOMN(seed, n, n)

; Reduce to upper Hessenberg and compute Q:
H = LA_ELMHES(array, q, $
PERMUTE_RESULT = permute, SCALE_RESULT = scale)

; Compute eigenvalues, T, and QZ arrays:
eigenvalues = LA_HQR(h, q, PERMUTE_RESULT = permute)

; Compute eigenvectors corresponding to
; the first 3 eigenvalues.
select = [1, 1, 1, REPLICATE(0, n - 3)]
eigenvectors = LA_EIGENVEC(H, Q, $

EIGENINDEX = eigenindex, $
PERMUTE_RESULT = permute, SCALE_RESULT = scale, $
SELECT = select)

PRINT, 'LA_EIGENVEC eigenvalues:'
PRINT, eigenvalues[eigenindex]
END

When this program is compiled and run, IDL prints:

LA_EIGENVEC eigenvalues:
(-0.278633, 2.55055) (-0.278633, -2.55055)
(2.31208, 0.000000)

Version History

Introduced 5.6

See Also

EIGENVEC, LA_ELMHES, LA_HQR
LA_EIGENVEC What’s New in IDL 5.6

Chapter 3: New IDL Routines 341
LA_ELMHES

The LA_ELMHES function reduces a real nonsymmetric or complex non-Hermitian
array to upper Hessenberg form H. If the array is real then the decomposition is
A = Q H QT, where Q is orthogonal. If the array is complex Hermitian then the
decomposition is A = Q H QH, where Q is unitary. The superscript T represents the
transpose while superscript H represents the Hermitian, or transpose complex
conjugate.

LA_ELMHES is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_ELMHES(Array [, Q] [, BALANCE=value] [, /DOUBLE]
[, NORM_BALANCE=variable] [, PERMUTE_RESULT=variable]
[, SCALE_RESULT=variable])

Return Value

The result is an array of the same type as A containing the upper Hessenberg form.
The Hessenberg array is stored in the upper triangle and the first subdiagonal.
Elements below the subdiagonal should be ignored but are not automatically set to
zero.

Output Type
Balance &

Reduce
Norm Optional Q

Float sgebal, sgehrd slange sorghr

Double dgebal, dgehrd dlange dorghr

Complex cgebal, cgehrd clange cunghr

Double complex zgebal, zgehrd zlange zunghr

Table 3-13: LAPACK Routine Basis for LA_ELMHES
What’s New in IDL 5.6 LA_ELMHES

342 Chapter 3: New IDL Routines
Arguments

Array

The n-by-n real or complex array to reduce to upper Hessenberg form.

Q

Set this optional argument to a named variable in which the array Q will be returned.
The Q argument may then be input into LA_HQR to compute the Schur vectors.

Keywords

BALANCE

Set this keyword to one of the following values:

• BALANCE = 0: No balancing is applied to Array.

• BALANCE = 1: Both permutation and scale balancing are performed.

• BALANCE = 2: Permutations are performed to make the array more nearly
upper triangular.

• BALANCE = 3: Diagonally scale the array to make the columns and rows
more equal in norm.

The default is BALANCE = 1, which performs both permutation and scaling
balances. Balancing a nonsymmetric array is recommended to reduce the sensitivity
of eigenvalues to rounding errors.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

NORM_BALANCE

Set this keyword to a named variable in which the one-norm of the balanced matrix
will be returned. The one-norm is defined as the maximum value of the sum of
absolute values of the columns.
LA_ELMHES What’s New in IDL 5.6

Chapter 3: New IDL Routines 343
PERMUTE_RESULT

Set this keyword to a named variable in which the result for permutation balancing
will be returned as a two-element vector [ilo, ihi]. If permute balancing is not done
then the values will be ilo = 1 and ihi = n.

SCALE_RESULT

Set this keyword to a named variable in which the result for permute and scale
balancing will be returned as an n-element vector.

Examples

See LA_EIGENVEC for an example of using this procedure.

Version History

Introduced 5.6

See Also

ELMHES, LA_HQR
What’s New in IDL 5.6 LA_ELMHES

344 Chapter 3: New IDL Routines
LA_GM_LINEAR_MODEL

The LA_GM_LINEAR_MODEL function is used to solve a general Gauss-Markov
linear model problem:

minimizex ||y||2 with constraint d = Ax + By

where A is an m-column by n-row array, B is a p-column by n-row array, and d is an
n-element input vector with m ≤ n ≤ m+p.

The following items should be noted:

• If A has full column rank m and the array (A B) has full row rank n, then there
is a unique solution x and a minimal 2-norm solution y.

• If B is square and nonsingular then the problem is equivalent to a weighted
linear least-squares problem, minimizex ||B -1(Ax - d)||2.

• If B is the identity matrix then the problem reduces to the ordinary linear least-
squares problem, minimizex ||Ax - d||2.

LA_ GM_LINEAR_MODEL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_GM_LINEAR_MODEL(A, B, D, Y [, /DOUBLE])

Return Value

The result (x) is an m-element vector whose type is identical to A.

Output Type LAPACK Routine

Float sggglm

Double dggglm

Complex cggglm

Double complex zggglm

Table 3-14: LAPACK Routine Basis for LA_GM_LINEAR_MODEL
LA_GM_LINEAR_MODEL What’s New in IDL 5.6

Chapter 3: New IDL Routines 345
Arguments

A

The m-by-n array used in the constraint equation.

B

The p-by-n array used in the constraint equation.

D

An n-element input vector used in the constraint equation.

Y

Set this argument to a named variable, which will contain the p-element output
vector.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

Examples

Given the constraint equation d = Ax + By, (where A, B, and d are defined in the
program below) the following example program solves the general Gauss-Markov
problem:

PRO ExLA_GM_LINEAR_MODEL
; Define some example coefficient arrays:
a = [[2, 7, 4], $

[5, 1, 3], $
[3, 3, 6], $
[4, 5, 2]]

b = [[-3, 2], $
[1, 5], $
[2, 9], $
[4, 1]]
What’s New in IDL 5.6 LA_GM_LINEAR_MODEL

346 Chapter 3: New IDL Routines
; Define a sample left-hand side vector D:
d = [-1, 2, -3, 4]

; Find and print the solution x:
x = LA_GM_LINEAR_MODEL(a, b, d, y)
PRINT, 'LA_GM_LINEAR_MODEL solution:'
PRINT, X
PRINT, 'LA_GM_LINEAR_MODEL 2-norm solution:'
PRINT, Y
END

When this program is compiled and run, IDL prints:

LA_GM_LINEAR_MODEL solution:
1.04668 0.350346 -1.28445

LA_GM_LINEAR_MODEL 2-norm solution:
0.151716 0.0235733

Version History

Introduced 5.6

See Also

LA_LEAST_SQUARE_EQUALITY, LA_LEAST_SQUARES
LA_GM_LINEAR_MODEL What’s New in IDL 5.6

Chapter 3: New IDL Routines 347
LA_HQR

The LA_HQR function uses the multishift QR algorithm to compute all eigenvalues
of an n-by-n upper Hessenberg array. The LA_ELMHES routine can be used to
reduce a real or complex array to upper Hessenberg form suitable for input to this
procedure. LA_HQR may also be used to compute the matrices T and QZ from the
Schur decomposition A = (QZ) T (QZ)H.

LA_HQR is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_HQR(H [, Q] [, /DOUBLE] [, PERMUTE_RESULT=[ilo, ihi]]
[, STATUS=variable])

Return Value

The result is an n-element complex vector.

Arguments

H

An n-by-n upper Hessenberg array, created by the LA_ELMHES procedure. If
argument Q is present, then on return H is replaced by the Schur form T. If argument
Q is not present then H is unchanged.

Output Type LAPACK Routine

Float shseqr

Double dhseqr

Complex chseqr

Double complex zhseqr

Table 3-15: LAPACK Routine Basis for LA_HQR
What’s New in IDL 5.6 LA_HQR

348 Chapter 3: New IDL Routines
Q

Set this optional argument to the array Q created by the LA_ELMHES procedure. If
argument Q is present, then on return Q is replaced by the Schur vectors QZ.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if H is double precision, otherwise the default is DOUBLE = 0.

PERMUTE_RESULT

Set this keyword to a two-element vector containing the [ilo, ihi] permutation results
from the LA_ELMHES procedure. The default is [1, n], indicating that permute
balancing was not done on H.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The algorithm failed to find all eigenvalues in 30*(ihi - ilo + 1)
iterations. The STATUS value indicates that eigenvalues ilo:STATUS (starting
at index 1) did not converge; all other eigenvalues converged.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

See LA_EIGENVEC for an example of using this procedure.

Version History

Introduced 5.6
LA_HQR What’s New in IDL 5.6

Chapter 3: New IDL Routines 349
See Also

HQR, LA_EIGENVEC, LA_ELMHES
What’s New in IDL 5.6 LA_HQR

350 Chapter 3: New IDL Routines
LA_INVERT

The LA_INVERT function uses LU decomposition to compute the inverse of a
square array.

LA_INVERT is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_INVERT(A [, /DOUBLE] [, STATUS=variable])

Return Value

The result is an array of the same dimensions as the input array.

Arguments

A

The n-by-n array to be inverted.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

Output Type LAPACK Routine

Float sgetrf, sgetri

Double dgetrf, dgetri

Complex cgetrf, cgetri

Double complex zgetrf, zgetri

Table 3-16: LAPACK Routine Basis for LA_INVERT
LA_INVERT What’s New in IDL 5.6

Chapter 3: New IDL Routines 351
STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The array is singular and the inverse could not be computed. The
STATUS value specifies which value along the diagonal (starting at one) is
zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

The following program computes the inverse of a square array:

PRO ExLA_INVERT
; Create a square array.
array =[[1d, 2, 1], $

[4, 10, 15], $
[3, 7, 1]]

; Compute the inverse and check the error.
ainv = LA_INVERT(array)
PRINT, 'LA_INVERT Identity Matrix:'
PRINT, ainv ## array
END

When this program is compiled and run, IDL prints:

A_INVERT Identity Matrix:
1.0000000 1.7763568e-015 6.6613381e-016
0.00000000 1.0000000 1.2212453e-015
0.00000000 0.00000000 1.0000000

Version History

Introduced 5.6

See Also

INVERT, LA_LUDC
What’s New in IDL 5.6 LA_INVERT

352 Chapter 3: New IDL Routines
LA_LEAST_SQUARE_EQUALITY

The LA_LEAST_SQUARE_EQUALITY function is used to solve the linear least-
squares problem:

Minimizex ||Ax - c||2 with constraint Bx = d

where A is an n-column by m-row array, B is an n-column by p-row array, c is an m-
element input vector, and d is an p-element input vector with p ≤ n ≤ m+p. If B has

full row rank p and the array has full column rank n, then a unique solution
exists.

LA_ LEAST_SQUARE_EQUALITY is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_LEAST_SQUARE_EQUALITY(A, B, C, D [, /DOUBLE]
[, RESIDUAL=variable])

Return Value

The result (x) is an n-element vector.

Arguments

A

The n-by-m array used in the least-squares minimization.

Output Type LAPACK Routine

Float sgglse

Double dgglse

Complex cgglse

Double complex zgglse

Table 3-17: LAPACK Routine Basis for LA_LEAST_SQUARE_EQUALITY

A

B� �
� �
LA_LEAST_SQUARE_EQUALITY What’s New in IDL 5.6

Chapter 3: New IDL Routines 353
B

The n-by-p array used in the equality constraint.

C

An m-element input vector containing the right-hand side of the least-squares system.

D

A p-element input vector containing the right-hand side of the equality constraint.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

RESIDUAL

Set this keyword to a named variable in which to return a scalar giving the residual
sum-of-squares for Result. If n = m + p then RESIDUAL will be zero.

Examples

Given the following system of equations:

2t + 5u + 3v + 4w = 9
7t + u + 3v + 5w = 1
4t + 3u + 6v + 2w = 2

with constraints,

-3t + u + 2v + 4w = -4
2t + 5u + 9v + 1w = 4

find the solution using the following program:

PRO ExLA_LEAST_SQUARE_EQUALITY
; Define the coefficient array:
a = [[2, 5, 3, 4], $

[7, 1, 3, 5], $
[4, 3, 6, 2]]
What’s New in IDL 5.6 LA_LEAST_SQUARE_EQUALITY

354 Chapter 3: New IDL Routines
; Define the constraint array:
b = [[-3, 1, 2, 4], $

[2, 5, 9, 1]]

; Define the right-hand side vector c:
c = [9, 1, 2]

; Define the constraint right-hand side d:
d = [-4, 4]

; Find and print the minimum norm solution of a:
x = LA_LEAST_SQUARE_EQUALITY(a, b, c, d)
PRINT, 'LA_LEAST_SQUARE_EQUALITY solution:'
PRINT, x
END

When this program is compiled and run, IDL prints:

LA_LEAST_SQUARE_EQUALITY solution:
0.651349 2.72695 -1.14638 -0.620036

Version History

Introduced 5.6

See Also

LA_GM_LINEAR_MODEL, LA_LEAST_SQUARES
LA_LEAST_SQUARE_EQUALITY What’s New in IDL 5.6

Chapter 3: New IDL Routines 355
LA_LEAST_SQUARES

The LA_LEAST_SQUARES function is used to solve the linear least-squares
problem:

Minimizex ||Ax - b||2

where A is a (possibly rank-deficient) n-column by m-row array, b is an m-element
input vector, and x is the n-element solution vector. There are three possible cases:

• If m ≥ n and the rank of A is n, then the system is overdetermined and a unique
solution may be found, known as the least-squares solution.

• If m < n and the rank of A is m, then the system is under determined and an
infinite number of solutions satisfy Ax - b = 0. In this case, the solution is
found which minimizes ||x||2, known as the minimum norm solution.

• If A is rank deficient, such that the rank of A is less than MIN(m, n), then the
solution is found which minimizes both ||Ax - b||2 and ||x||2, known as the
minimum-norm least-squares solution.

The LA_LEAST_SQUARES function may also be used to solve for multiple systems
of least squares, with each column of b representing a different set of equations. In
this case, the result is a k-by-n array where each of the k columns represents the
solution vector for that set of equations.

LA_ LEAST_SQUARES is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Output Type LAPACK Routines

Float sgels, sgelsy, sgelss, sgelsd

Double dgels, dgelsy, dgelss, dgelsd

Complex cgels, cgelsy, cgelss, cgelsd

Double complex zgels, zgelsy, zgelss, zgelsd

Table 3-18: LAPACK Routine Basis for LA_LEAST_SQUARES
What’s New in IDL 5.6 LA_LEAST_SQUARES

356 Chapter 3: New IDL Routines
Syntax

Result = LA_LEAST_SQUARES(A, B [, /DOUBLE] [, METHOD=value]
[, RANK=variable] [, RCONDITION=value] [, RESIDUAL=variable]
[, STATUS=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

A

The n-by-m array used in the least-squares system.

B

An m-element input vector containing the right-hand side of the linear least-squares
system, or a k-by-m array, where each of the k columns represents a different least-
squares system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

METHOD

Set this keyword to indicate which computation method to use. Possible values are:

• METHOD = 0 (the default): Assume that array A has full rank equal to
min(m, n). If m ≥ n, find the least-squares solution to the overdetermined
system. If m < n, find the minimum norm solution to the under determined
system. Both cases use QR or LQ factorization of A.

• METHOD = 1: Assume that array A may be rank deficient; use a complete
orthogonal factorization of A to find the minimum norm least-squares solution.
LA_LEAST_SQUARES What’s New in IDL 5.6

Chapter 3: New IDL Routines 357
• METHOD = 2: Assume that array A may be rank deficient; use singular value
decomposition (SVD) to find the minimum norm least-squares solution.

• METHOD = 3: Assume that array A may be rank deficient; use SVD with a
divide-and-conquer algorithm to find the minimum norm least-squares
solution. The divide-and-conquer method is faster than regular SVD, but may
require more memory.

RANK

Set this keyword to a named variable in which to return the effective rank of A. If
METHOD = 0 or the array is full rank, then RANK will have the value MIN(m, n).

RCONDITION

Set this keyword to the reciprocal condition number used as a cutoff value in
determining the effective rank of A. Arrays with condition numbers larger than
1/RCONDITION are assumed to be rank deficient. If RCONDITION is set to zero or
omitted, then array A is assumed to be of full rank. This keyword is ignored for
METHOD = 0.

RESIDUAL

If m > n and the rank of A is n (the system is overdetermined), then set this keyword
to a named variable in which to return the residual sum-of-squares for Result. If B is
an m-element vector then RESIDUAL will be a scalar; if B is a k-by-m array then
RESIDUAL will be a k-element vector containing the residual sum-of-squares for
each system of equations. If m ≤ n or A is rank deficient (rank < n) then the values in
RESIDUAL will be zero.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: For METHOD=2 or METHOD=3, this indicates that the SVD
algorithm failed to converge, and STATUS off-diagonal elements of an
intermediate bidiagonal form did not converge to zero. For METHOD=0 or
METHOD=1 the STATUS will always be zero.
What’s New in IDL 5.6 LA_LEAST_SQUARES

358 Chapter 3: New IDL Routines
Examples

Given the following under determined system of equations:

2t + 5u + 3v + 4w = 3
7t + u + 3v + 5w = 1
4t + 3u + 6v + 2w = 6

The following program can be used to find the solution:

PRO ExLA_LEAST_SQUARES
; Define the coefficient array:
a = [[2, 5, 3, 4], $

[7, 1, 3, 5], $
[4, 3, 6, 2]]

; Define the right-hand side vector b:
b = [3, 1, 6]

; Find and print the minimum norm solution of a:
x = LA_LEAST_SQUARES(a, b)
PRINT, 'LA_LEAST_SQUARES solution:', x
END

When this program is compiled and run, IDL prints:

LA_LEAST_SQUARES solution:
-0.0376844 0.350628 0.986164 -0.409066

Version History

Introduced 5.6

See Also

LA_GM_LINEAR_MODEL, LA_LEAST_SQUARE_EQUALITY
LA_LEAST_SQUARES What’s New in IDL 5.6

Chapter 3: New IDL Routines 359
LA_LINEAR_EQUATION

The LA_LINEAR_EQUATION function uses LU decomposition to solve a system
of linear equations, AX = B, and provides optional error bounds and backward error
estimates.

The LA_LINEAR_EQUATION function may also be used to solve for multiple
systems of linear equations, with each column of B representing a different set of
equations. In this case, the result is a k-by-n array where each of the k columns
represents the solution vector for that set of equations.

This routine is written in the IDL language. Its source code can be found in the file
la_linear_equation.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LA_LINEAR_EQUATION(Array, B [, BACKWARD_ERROR=variable]
[, /DOUBLE] [, FORWARD_ERROR=variable] [, STATUS=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

Array

The n-by-n array of the linear system AX = B.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.
What’s New in IDL 5.6 LA_LINEAR_EQUATION

360 Chapter 3: New IDL Routines
Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The computation failed because one of the diagonal elements of
the LU decomposition is zero. The STATUS value specifies which value along
the diagonal (starting at one) is zero.

Note
If STATUS is not specified, any error messages will be output to the screen.
LA_LINEAR_EQUATION What’s New in IDL 5.6

Chapter 3: New IDL Routines 361
Examples

Given the system of equations:

4u + 16000v + 17000w = 100.1
2u + 5v + 8w = 0.1
3u + 6v + 10w = 0.01

The following program can be used to find the solution:

PRO ExLA_LINEAR_EQUATION
; Define the coefficient array:
a = [[4, 16000, 17000], $

[2, 5, 8], $
[3, 6, 10]]

; Define the right-hand side vector b:
b = [100.1, 0.1, 0.01]

; Compute and print the solution to ax=b:
x = LA_LINEAR_EQUATION(a, b)
PRINT, 'LA_LINEAR_EQUATION solution:', X
end

When this program is compiled and run, IDL prints:

LA_LINEAR_EQUATION solution:
-0.397432 -0.334865 0.321148

The exact solution to 6 decimal places is [-0.397432, -0.334865, 0.321149].

Version History

Introduced 5.6

See Also

LA_LUDC, LA_LUMPROVE, LA_LUSOL
What’s New in IDL 5.6 LA_LINEAR_EQUATION

362 Chapter 3: New IDL Routines
LA_LUDC

The LA_LUDC procedure computes the LU decomposition of an n-column by m-
row array as:

A = P L U

where P is a permutation matrix, L is lower trapezoidal with unit diagonal elements
(lower triangular if n = m), and U is upper trapezoidal (upper triangular if n = m).

LA_LUDC is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_LUDC, Array, Index [, /DOUBLE] [, STATUS=variable]

Arguments

Array

A named variable containing the real or complex array to decompose. This procedure
returns Array as its LU decomposition.

Index

An output vector with MIN(m, n) elements that records the row permutations which
occurred as a result of partial pivoting. For 1 < j < MIN(m,n), row j of the matrix was
interchanged with row Index[j].

Output Type LAPACK Routine

Float sgetrf

Double dgetrf

Complex cgetrf

Double complex zgetrf

Table 3-19: LAPACK Routine Basis for LA_LUDC
LA_LUDC What’s New in IDL 5.6

Chapter 3: New IDL Routines 363
Note
Row numbers within Index start at one rather than zero.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: One of the diagonal elements of U is zero. The STATUS value
specifies which value along the diagonal (starting at one) is zero.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

The following example uses the LU decomposition on a given array, then determines
the residual error of using the resulting lower and upper arrays to recompute the
original array:

PRO ExLA_LUDC
; Create a random array:
n = 20
seed = 12321
array = RANDOMN(seed, n, n)

; Compute LU decomposition.
aludc = array ; make a copy
LA_LUDC, aludc, index
What’s New in IDL 5.6 LA_LUDC

364 Chapter 3: New IDL Routines
; Extract the lower and upper triangular arrays.
l = IDENTITY(n)
u = FLTARR(n, n)
FOR j = 1,n - 1 DO l[0:j-1,j] = aludc[0:j-1,j]
FOR j=0,n - 1 DO u[j:*,j] = aludc[j:*,j]

; Reconstruct array, but with rows permuted.
arecon = l ## u
; Adjust from LAPACK back to IDL indexing.
Index = Index - 1
; Permute the array rows back into correct order.
; Note that we need to loop in reverse order.
FOR i = n - 1,0,-1 DO BEGIN & $

temp = arecon[*,i]
arecon[*, i] = arecon[*,index[i]]
arecon[*, index[i]] = temp

ENDFOR
PRINT, 'LA_LUDC Error:', MAX(ABS(arecon - array))
END

When this program is compiled and run, IDL prints:

LA_LUDC error: 4.76837e-007

Version History

Introduced 5.6

See Also

LA_LUMPROVE, LA_LUSOL, LUDC
LA_LUDC What’s New in IDL 5.6

Chapter 3: New IDL Routines 365
LA_LUMPROVE

The LA_LUMPROVE function uses LU decomposition to improve the solution to a
system of linear equations, AX = B, and provides optional error bounds and backward
error estimates.

The LA_LUMPROVE function may also be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, the result is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_LUMPROVE is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_LUMPROVE(Array, Aludc, Index, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD_ERROR=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

Array

The original n-by-n array of the linear system.

Output Type LAPACK Routine

Float sgerfs

Double dgetrfs

Complex cgetrfs

Double complex zgetrfs

Table 3-20: LAPACK Routine Basis for LA_LUMPROVE
What’s New in IDL 5.6 LA_LUMPROVE

366 Chapter 3: New IDL Routines
Aludc

The n-by-n LU decomposition of Array, created by the LA_LUDC procedure.

Index

An n-element input vector, created by the LA_LUDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or a k-by-n array, containing the approximate solutions to
the linear system, created by the LA_LUSOL function.

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
LA_LUMPROVE What’s New in IDL 5.6

Chapter 3: New IDL Routines 367
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

Examples

The solution to a given system of equations can be derived and improved by using the
following program:

PRO ExLA_LUMPROVE
; Define the coefficient array:

a= [[4, 16000, 17000], $
[2, 5, 8], $
[3, 6, 10]]

; Compute the LU decomposition:
aludc = a
; make a copy
LA_LUDC, aludc, index

; Define the right-hand side vector B:
b = [100.1, 0.1, 0.01]
; Find the solution to Ax=b:
x = LA_LUSOL(aludc, index, b)
PRINT, 'LA_LUSOL Solution:', x

; Improve the solution:
xnew = LA_LUMPROVE(a, aludc, index, b, x)
PRINT, 'LA_LUMPROVE Solution:', xnew
END

When this program is compiled and run, IDL prints:

LA_LUSOL Solution:
-0.397355 -0.334742 0.321033
LA_LUMPROVE Solution:
-0.397432 -0.334865 0.321148

The exact solution to 6 decimal places is [-0.397432, -0.334865, 0.321149].

Version History

Introduced 5.6

See Also

LA_LUDC, LA_LUSOL, LUMPROVE
What’s New in IDL 5.6 LA_LUMPROVE

368 Chapter 3: New IDL Routines
LA_LUSOL

The LA_LUSOL function is used in conjunction with the LA_LUDC procedure to
solve a set of n linear equations in n unknowns, AX = B. The parameter A is not the
original array, but its LU decomposition, created by the routine LA_LUDC.

The LA_LUSOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, the result is a k-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_LUSOL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_LUSOL(A, Index, B [, /DOUBLE])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

A

The n-by-n LU decomposition of an array, created by the LA_LUDC procedure.

Note
LA_LUSOL cannot accept any non-square output generated by LA_LUDC.

Output Type LAPACK Routine

Float sgetrs

Double dgetrs

Complex cgetrs

Double complex zgetrs

Table 3-21: LAPACK Routine Basis for LA_LUSOL
LA_LUSOL What’s New in IDL 5.6

Chapter 3: New IDL Routines 369
Index

An n-element input vector, created by the LA_LUDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

Examples

Given the system of equations:

4u + 16000v + 17000w = 100.1
2u + 5v + 8w = 0.1
3u + 6v + 10w = 0.01

find the solution can be derived by using the following program:

PRO ExLA_LUSOL
; Define the coefficient array:
a = [[4, 16000, 17000], $

[2, 5, 8], $
[3, 6, 10]]

; Compute the LU decomposition:
aludc = a
; make a copy
LA_LUDC, aludc, index

; Define the right-hand side vector B:
b = [100.1, 0.1, 0.01]

; Compute and print the solution to Ax=b:
x = LA_LUSOL(aludc, index, b)
PRINT, 'LA_LUSOL Solution:', x
END
What’s New in IDL 5.6 LA_LUSOL

370 Chapter 3: New IDL Routines
When this program is compiled and run, IDL prints:

LA_LUSOL solution: -0.397355 -0.334742 0.321033

The exact solution to 6 decimal places is [-0.397432, -0.334865, 0.321149].

Note
UNIX users may see slightly different output results.

Version History

Introduced 5.6

See Also

LA_LINEAR_EQUATION, LA_LUDC, LA_LUMPROVE, LUSOL
LA_LUSOL What’s New in IDL 5.6

Chapter 3: New IDL Routines 371
LA_SVD

The LA_SVD procedure computes the singular value decomposition (SVD) of an n-
columns by m-row array as the product of orthogonal and diagonal arrays:

A is real: A = U S VT

A is complex: A = U S VH

where U is an orthogonal array containing the left singular vectors, S is a diagonal
array containing the singular values, and V is an orthogonal array containing the right
singular vectors. The superscript T represents the transpose while the superscript H
represents the Hermitian, or transpose complex conjugate.

If n < m then U has dimensions (n x m), S has dimensions (n x n), and VH has
dimensions (n x n). If n ≥ m then U has dimensions (m x m), S has dimensions
(m x m), and VH has dimensions (n x m). The following diagram shows the array
dimensions:

LA_SVD is based on the following LAPACK routines:

Output Type
LAPACK Routine

QR Iteration Divide-and-conquer

Float sgesvd sgesdd

Double dgesvd dgesdd

Complex cgesvd cgesdd

Double complex zgesvd zgesdd

Table 3-22: LAPACK Routine Basis for LA_SVD

A U S V
T•• n m<=

A U S V
T•• n m≥=
What’s New in IDL 5.6 LA_SVD

372 Chapter 3: New IDL Routines
For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_SVD, Array, W, U, V [, /DOUBLE] [, /DIVIDE_CONQUER]
[, STATUS=variable]

Arguments

Array

The real or complex array to decompose.

W

On output, W is a vector with MIN(m, n) elements containing the singular values.

U

On output, U is an orthogonal array with MIN(m, n) columns and m rows used in the
decomposition of Array. If Array is complex then U will be complex, otherwise U
will be real.

V

On output, V is an orthogonal array with MIN(m, n) columns and n rows used in the
decomposition of Array. If Array is complex then V will be complex, otherwise V
will be real.

Note
To reconstruct Array, you will need to take the transpose or Hermitian of V.

Keywords

DIVIDE_CONQUER

If this keyword is set, then the divide-and-conquer method is used to compute the
singular vectors, otherwise, QR iteration is used. The divide-and-conquer method is
faster at computing singular vectors of large matrices, but uses more memory and
may produce less accurate singular values.
LA_SVD What’s New in IDL 5.6

Chapter 3: New IDL Routines 373
DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The computation did not converge. The STATUS value specifies
how many superdiagonals did not converge to zero.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

Construct a sample input array A, consisting of smoothed random values:

PRO ExLA_SVD
; Create a smoothed random array:
n = 100
m = 200
seed = 12321
a = SMOOTH(RANDOMN(seed, n, m, /DOUBLE), 5)

; Compute the SVD and check reconstruction error:
LA_SVD, a, w, u, v
arecon = u ## DIAG_MATRIX(w) ## TRANSPOSE(v)
PRINT, 'LA_SVD error:', MAX(ABS(arecon - a))

; Keep only the 15 largest singular values
wfiltered = w
wfiltered[15:*] = 0.0
; Reconstruct the array:
afiltered = u ## DIAG_MATRIX(wfiltered) ## TRANSPOSE(v)
percentVar = 100*(w^2)/TOTAL(w^2)
PRINT, 'LA_SVD Variance:', TOTAL(percentVar[0:14])
END
What’s New in IDL 5.6 LA_SVD

374 Chapter 3: New IDL Routines
When this program is compiled and run, IDL prints:

LA_SVD error: 1.0103030e-014
LA_SVD variance: 82.802816

Note
More than 80% of the variance is contained in the 15 largest singular values.

Version History

Introduced 5.6

See Also

LA_CHOLDC, LA_LUDC, SVDC
LA_SVD What’s New in IDL 5.6

Chapter 3: New IDL Routines 375
LA_TRIDC

The LA_TRIDC procedure computes the LU decomposition of a tridiagonal (n x n)
array as Array = L U, where L is a product of permutation and unit lower bidiagonal
arrays, and U is upper triangular with nonzero elements only in the main diagonal and
the first two superdiagonals.

LA_TRIDC is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIDC, AL, A, AU, U2, Index [, /DOUBLE] [, STATUS=variable]

Arguments

AL

A named vector of length (n - 1) containing the subdiagonal elements of an array.
This procedure returns AL as the (n - 1) elements of the lower bidiagonal array from
the LU decomposition.

A

A named vector of length n containing the main diagonal elements of an array. This
procedure returns A as the n diagonal elements of the upper array from the LU
decomposition.

Output Type LAPACK Routine

Float sgttrf

Double dgttrf

Complex cgttrf

Double complex zgttrf

Table 3-23: LAPACK Routine Basis for LA_TRIDC
What’s New in IDL 5.6 LA_TRIDC

376 Chapter 3: New IDL Routines
AU

A named vector of length (n - 1) containing the superdiagonal elements of an array.
This procedure returns AU as the (n - 1) superdiagonal elements of the upper array.

U2

An output vector that contains the (n - 2) elements of the second superdiagonal of the
upper array.

Index

An output vector that records the row permutations which occurred as a result of
partial pivoting. For 1 < j < n, row j of the matrix was interchanged with row Index[j].

Note
Row numbers within Index start at one rather than zero.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if AL is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: One of the diagonal elements of U is zero. The STATUS value
specifies which value along the diagonal (starting at one) is zero.

Note
If STATUS is not specified, any error messages will output to the screen.
LA_TRIDC What’s New in IDL 5.6

Chapter 3: New IDL Routines 377
Examples

Create a test program to compute the LU decomposition of a tridiagonal array:

pro EX_LA_TRIDC
; Create a random tridiagonal array.
n = 9
seed = 12321
AL = RANDOMN(seed, n-1)
A = RANDOMN(seed, n)
AU = RANDOMN(seed, n-1)

; Construct tridiagonal array.
Array = DIAG_MATRIX(AL, -1) + DIAG_MATRIX(A) + $

DIAG_MATRIX(AU, 1)

; Compute the LU decomposition.
LA_TRIDC, AL, A, AU, U2, Index

; Adjust from LAPACK back to IDL indexing.
Index = Index - 1

; Create upper and lower arrays.
Upper = DIAG_MATRIX(A) + $

DIAG_MATRIX(AU, 1) + DIAG_MATRIX(U2, 2)
Lower = DIAG_MATRIX(AL, -1) + IDENTITY(n)

; To conserve storage, LA_TRIDC keeps all lower diagonal
; elements in AL, regardless of row. The Index array
; tells which subdiagonals need to be shifted down.
; Loop starts at 1 since there aren't any subdiagonals
; to the left of the first diagonal element.
for i = 1,n-2 do begin

if (Index[i] ne i) then $
Lower[0:i-1,[i,i+1]] = Lower[0:i-1,[i+1,i]]

endfor

; Permute the row order.
for i = n-2, 0, -1 do begin

if (Index[i] ne i) then $
Lower[*,[i,i+1]] = Lower[*,[i+1,i]]

endfor

; Reconstruct the array and check the difference:
Arecon = Lower ## Upper
print, 'LA_TRIDC error:', MAX(ABS(Arecon - Array))

end
What’s New in IDL 5.6 LA_TRIDC

378 Chapter 3: New IDL Routines
When this program is compiled and run, IDL prints:

LA_TRIDC error: 1.50427e-008

Version History

Introduced 5.6

See Also

LA_TRIMPROVE, LA_TRISOL
LA_TRIDC What’s New in IDL 5.6

Chapter 3: New IDL Routines 379
LA_TRIMPROVE

The LA_TRIMPROVE function improves the solution to a system of linear
equations with a tridiagonal array, AX = B, and provides optional error bounds and
backward error estimates.

The LA_TRIMPROVE function may also be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, the result is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_TRIMPROVE is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_TRIMPROVE(AL, A, AU, DAL, DA, DAU, DU2, Index, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD_ERROR=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

AL

A vector of length (n - 1) containing the subdiagonal elements of the original array.

Output Type LAPACK Routine

Float sgtrfs

Double dgtrfs

Complex cgtrfs

Double complex zgtrfs

Table 3-24: LAPACK Routine Basis for LA_TRIMPROVE
What’s New in IDL 5.6 LA_TRIMPROVE

380 Chapter 3: New IDL Routines
A

A vector of length n containing the main diagonal elements of the original array.

AU

A vector of length (n - 1) containing the superdiagonal elements of the original array.

DAL

The (n - 1) elements of the lower bidiagonal array, created by the LA_TRIDC
procedure.

DA

The n diagonal elements of the upper triangular array, created by the LA_TRIDC
procedure.

DAU

The (n - 1) superdiagonal elements of the upper triangular array, created by the
LA_TRIDC procedure.

DU2

The (n - 2) elements of the second superdiagonal of the upper triangular array, created
by the LA_TRIDC procedure.

Index

An input vector, created by the LA_TRIDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or a k-by-n array, containing the approximate solutions to
the linear system, created by the LA_TRISOL function.
LA_TRIMPROVE What’s New in IDL 5.6

Chapter 3: New IDL Routines 381
Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if AL is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

Examples

Given the tridiagonal system of equations:

-4t + u = 6

2t - 4u + v = -8

2u - 4v + w = -5

2v -4w = 8

the solution can be found and improved by using the following program:

PRO ExLA_TRIMPROVE
; Define array a:
aupper = [1, 1, 1]
adiag = [-4, -4, -4, -4]
alower = [2, 2, 2]
What’s New in IDL 5.6 LA_TRIMPROVE

382 Chapter 3: New IDL Routines
; Define right-hand side vector b:
b = [6, -8, -5, 8]

; Decompose a:
dlower = alower
darray = adiag
dupper = aupper
LA_TRIDC, dlower, darray, dupper, u2, index

; Compute and improve the solution:
x = LA_TRISOL(dlower, darray, dupper, u2, index, b)
xnew = LA_TRIMPROVE(Alower, Adiag, Aupper, $

dlower, darray, dupper, u2, index, b, x)
PRINT, 'LA_TRISOL improved solution:'
PRINT, xnew
END

When this program is compiled and run, IDL prints:

LA_TRISOL improved solution:
-1.00000 2.00000 2.00000 -1.00000

Version History

Introduced 5.6

See Also

LA_TRIDC, LA_TRISOL
LA_TRIMPROVE What’s New in IDL 5.6

Chapter 3: New IDL Routines 383
LA_TRIQL

The LA_TRIQL procedure uses the QL and QR variants of the implicitly-shifted QR
algorithm to compute the eigenvalues and eigenvectors of a symmetric tridiagonal
array. The LA_TRIRED routine can be used to reduce a real symmetric (or complex
Hermitian) array to tridiagonal form suitable for input to this procedure.

LA_TRIQL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIQL, D, E [, A] [, /DOUBLE] [, STATUS=variable]

Arguments

D

A named vector of length n containing the real diagonal elements, optionally created
by the LA_TRIRED procedure. Upon output, D is replaced by a real vector of length
n containing the eigenvalues.

E

The (n - 1) real subdiagonal elements, optionally created by the LA_TRIRED
procedure. On output, the values within E are destroyed.

Output Type LAPACK Routine

Float ssteqr

Double dsteqr

Complex csteqr

Double complex zsteqr

Table 3-25: LAPACK Routine Basis for LA_TRIQL
What’s New in IDL 5.6 LA_TRIQL

384 Chapter 3: New IDL Routines
A

An optional named variable that returns the eigenvectors as a set of n row vectors. If
the eigenvectors of a tridiagonal array are desired, A should be input as an identity
array. If the eigenvectors of an array that has been reduced by LA_TRIRED are
desired, A should be input as the Array output from LA_TRIRED. If A is not input,
then eigenvectors are not computed. A may be either real or complex.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
DOUBLE = 0 if none of the inputs are double precision. If A is not input, then the
default is /DOUBLE if D is double precision. If A is input, then the default is
/DOUBLE if A is double precision (real or complex).

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The algorithm failed to find all eigenvalues in 30n iterations.
The STATUS value specifies how many elements of E have not converged to
zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

The following example program computes the eigenvalues and eigenvectors of a
given symmetric array:

PRO ExLA_TRIQL
; Create a symmetric random array:
n = 4
seed = 12321
Array = RANDOMN(seed, n, n)
array = array + TRANSPOSE(array)
LA_TRIQL What’s New in IDL 5.6

Chapter 3: New IDL Routines 385
; Reduce to tridiagonal form
q = array ; make a copy
LA_TRIRED, q, d, e

; Compute eigenvalues and eigenvectors
eigenvalues = d
eigenvectors = q
LA_TRIQL, eigenvalues, e, eigenvectors
PRINT, 'LA_TRIQL eigenvalues:'
PRINT, eigenvalues
END

When this program is compiled and run, IDL prints:

LA_TRIQL eigenvalues:
-2.87710 -0.663354 2.92018 3.59648

Version History

Introduced 5.6

See Also

LA_TRIRED, TRIQL
What’s New in IDL 5.6 LA_TRIQL

386 Chapter 3: New IDL Routines
LA_TRIRED

The LA_TRIRED procedure reduces a real symmetric or complex Hermitian array to
real tridiagonal form T. If the array is real symmetric then the decomposition is
A = Q T QT, where Q is orthogonal. If the array is complex Hermitian then the
decomposition is A = Q T QH, where Q is unitary. The superscript T represents the
transpose while superscript H represents the Hermitian, or transpose complex
conjugate.

LA_TRIRED is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIRED, Array, D, E [, /DOUBLE] [, /UPPER]

Arguments

Array

A named variable containing the real or complex array to decompose. Only the lower
triangular portion of Array is used (or upper if the /UPPER keyword is set). This
procedure returns Array as the real orthogonal (or complex unitary) Q array used to
reduce the original array to tridiagonal form.

D

An n-element output vector containing the real diagonal elements of the tridiagonal
array. Note that D is always real.

Output Type LAPACK Routine

Float ssytrd, sorgtr

Double dsytrd, dorgtr

Complex chetrd, cungtr

Double complex zhetrd, zungtr

Table 3-26: LAPACK Routine Basis for LA_TRIRED
LA_TRIRED What’s New in IDL 5.6

Chapter 3: New IDL Routines 387
E

An (n - 1) element output vector containing the real subdiagonal elements of the
tridiagonal array. Note that E is always real.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real) result. Set DOUBLE = 0 to use single-precision for computations and
to return a single-precision (real) result. The default is /DOUBLE if Array is double
precision, otherwise the default is DOUBLE = 0.

UPPER

If this keyword is set, then only the upper triangular portion of Array is used, and the
upper triangular array is returned. The default is to use the lower triangular portion
and return the lower triangular array.

Examples

See LA_TRIQL for an example of using this procedure.

Version History

Introduced 5.6

See Also

LA_TRIQL, TRIRED
What’s New in IDL 5.6 LA_TRIRED

388 Chapter 3: New IDL Routines
LA_TRISOL

The LA_TRISOL function is used in conjunction with the LA_TRIDC procedure to
solve a set of n linear equations in n unknowns, AX = B, where A is a tridiagonal
array. The parameter A is input not as the original array, but as its LU decomposition,
created by the routine LA_TRIDC.

The LA_TRISOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, the result is a k-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_TRISOL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_TRISOL(AL, A, AU, U2, Index, B [, /DOUBLE])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

AL

The (n - 1) elements of the lower bidiagonal array, created by the LA_TRIDC
procedure.

Output Type LAPACK Routine

Float sgttrs

Double dgttrs

Complex cgttrs

Double complex zgttrs

Table 3-27: LAPACK Routine Basis for LA_TRISOL
LA_TRISOL What’s New in IDL 5.6

Chapter 3: New IDL Routines 389
A

The n diagonal elements of the upper triangular array, created by the LA_TRIDC
procedure.

AU

The (n - 1) superdiagonal elements of the upper triangular array, created by the
LA_TRIDC procedure.

U2

The (n - 2) elements of the second superdiagonal of the upper triangular array, created
by the LA_TRIDC procedure.

Index

An input vector, created by the LA_TRIDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if AL is double precision, otherwise the default is DOUBLE = 0.

Example

For an example of using this routine see LA_TRIMPROVE.

Version History

Introduced 5.6
What’s New in IDL 5.6 LA_TRISOL

390 Chapter 3: New IDL Routines
See Also

LA_TRIDC, LA_TRIMPROVE, TRISOL
LA_TRISOL What’s New in IDL 5.6

Chapter 3: New IDL Routines 391
MAP_PROJ_FORWARD

The MAP_PROJ_FORWARD function transforms map coordinates from longitude
and latitude to Cartesian (x, y) coordinates, using either the !MAP system variable or
a supplied map projection structure.

Syntax

Result = MAP_PROJ_FORWARD(Longitude [, Latitude]
[, CONNECTIVITY=vector] [, MAP_STRUCTURE=value]
[, POLYGONS=variable] [, POLYLINES=variable] [, /RADIANS])

Return Value

The result is a (2, n) array containing the Cartesian (x, y) coordinates.

Note
If the POLYGONS or POLYLINES keyword is present, the number of points in the
result may be different than the number of input points, depending upon whether
clipping and splitting occurs.

Arguments

Longitude

An n-element vector containing the longitude values. If the Latitude argument is
omitted, Longitude must be a (2, n) array of longitude and latitude pairs.

Latitude

An n-element vector containing latitude values. If this argument is omitted,
Longitude must be a (2, n) array of longitude and latitude pairs.
What’s New in IDL 5.6 MAP_PROJ_FORWARD

392 Chapter 3: New IDL Routines
Keywords

CONNECTIVITY

Set this keyword to a vector containing an input connectivity list for polygons or
polylines. The CONNECTIVITY keyword allows you to specify multiple polygons
or polylines using a single array. The CONNECTIVITY list is a one-dimensional
integer array of the form:

where each mj is an integer specifying the number of vertices that define the polyline
or polygon (the vertex count), and each associated set of i0...im-1 are indices into the
arrays of vertices specified by the Longitude and Latitude arguments.

For example, to draw polylines between the first, third, and sixth longitude and
latitude values and the fourth, sixth, ninth, and tenth longitude and latitude values, set
the CONNECTIVITY array equal to [3,0,2,5,4,3,5,8,9].

To ignore a set of entries in the CONNECTIVITY array, set the vertex count, mj,
equal to zero. (Note that if you set an m equal to zero, you must remove the
associated set of i0...im-1 values as well.) To ignore the remaining entries in the
CONNECTIVITY array, set the vertex count, mj, equal to -1.

This keyword is ignored if neither POLYGONS nor POLYLINES are present.

MAP_STRUCTURE

Set this keyword to a !MAP structure variable containing the projection parameters,
as constructed by the MAP_PROJ_INIT. If this keyword is omitted, the !MAP
system variable is used.

POLYGONS

Set this keyword to a named variable that will contain a connectivity array of the
form described above in the CONNECTIVITY keyword.

If this keyword is present, the arrays specified by the Longitude and Latitude
arguments are assumed to be the vertices of a closed polygon. In this case, polygon
clipping and splitting is performed in addition to the map transform, and the
connectivity array is returned in the specified variable. If this keyword is not present,

m1 i0 i1 … im1 1– m2 i0 i1 … im2 1– … mn i0 i1 … imn 1–, , , , , , , , , , , , , , ,
MAP_PROJ_FORWARD What’s New in IDL 5.6

Chapter 3: New IDL Routines 393
the arrays specified by the Longitude and Latitude arguments are assumed to be
independent points and no clipping or splitting is performed.

POLYLINES

Set this keyword to a named variable that will contain a connectivity array of the
form described above in the CONNECTIVITY keyword.

If this keyword is present, the arrays specified by the Longitude and Latitude
arguments are assumed to be the vertices of a polyline. In this case, polyline clipping
and splitting is performed in addition to the map transform, and the connectivity array
is returned in the specified variable.

If this keyword is not present, the arrays specified by the Longitude and Latitude
arguments are assumed to be independent points and no clipping or splitting is
performed.

RADIANS

Set this keyword to indicate that the input longitude and latitude coordinates are in
radians. By default, coordinates are assumed to be in degrees.

Examples

The following example creates a latitude and longitude grid with labels for the
Goodes Homolosine map projection.

; Helper function. Constructs the polyline objects.
PRO Ex_Map_AddPolyline, label, $

gridLon, gridLat, sMap, oModel, oContainer, oFont, $
LONGITUDE = longitude

longitude = KEYWORD_SET(longitude)

; Transform from lat/lon to X/Y cartesian.
gridUV = MAP_PROJ_FORWARD(gridLon, gridLat, $

MAP=sMap, POLYLINES = gridPoly)
IF (N_ELEMENTS(gridUV) LT 2) THEN $

RETURN

; Construct label object if desired.
IF (label NE '') THEN BEGIN

oLabel = OBJ_NEW('IDLgrText', label, $
ALIGN = longitude ? 0.5 : 1, $
FONT = oFont, VERTICAL_ALIGN=0.5)

oContainer->Add, oLabel
ENDIF
What’s New in IDL 5.6 MAP_PROJ_FORWARD

394 Chapter 3: New IDL Routines
; Create the polyline object.
oModel->Add, OBJ_NEW('IDlgrPolyline', gridUV, $

LABEL_OBJ = oLabel, $
LABEL_OFFSET = longitude ? 0.35 : 0, $
/USE_LABEL_ORIENTATION, /USE_TEXT_ALIGN, $
POLYLINE = gridPoly)

END

; Main function. Creates a grid over a map projection.
PRO Ex_Map_Proj_Forward

; Construct !MAP structure containing the projection.
sMap = MAP_PROJ_INIT('Goodes Homolosine')

; Create a graphics model to hold the visualizations.
oModel = OBJ_NEW('IDLgrModel')
oContainer = OBJ_NEW('IDL_Container')
oFont = OBJ_NEW('IDLgrFont', SIZE = 4)
oContainer -> Add, oFont
deg = STRING(176b) ; degrees symbol in Truetype

; Latitude lines.
gridLon = DINDGEN(361) - 180
latitude = 15*(INDGEN(11) - 5)

FOR i = 0,(N_ELEMENTS(latitude) - 1) DO BEGIN
lat = latitude[i]
gridLat = REPLICATE(lat, 361)

; Create the latitude label.
label = (lat EQ 0) ? 'Equ' : $

STRTRIM(ABS(lat),2) + deg + (['N','S'])[lat LT 0]
Ex_Map_Addpolyline, label, gridLon, gridLat, $

sMap, oModel, oContainer, oFont
ENDFOR

; Longitude lines.
gridLat = DINDGEN(181) - 90

; Add in some extra lines for the Goode projections.
longitude = [20*(DINDGEN(18) - 9), $

-179.999d, -20.001d, -100.001d, -40.001d, 80.001d]

FOR i = 0,N_ELEMENTS(longitude) - 1 DO BEGIN
lon = longitude[i]
gridLon = REPLICATE(lon, 181)
MAP_PROJ_FORWARD What’s New in IDL 5.6

Chapter 3: New IDL Routines 395
; Create the longitude label.
label = STRTRIM(ROUND(ABS(lon)),2) + deg
IF ((lon mod 180) NE 0) THEN $

label = label + (['E','W'])[lon LT 0]
IF (lon NE FIX(lon)) THEN label = ''

Ex_Map_Addpolyline, label, gridLon, gridLat, $
sMap, oModel, oContainer, oFont, /LONGITUDE

ENDFOR

; Visualize our map projection.
XOBJVIEW, oModel, SCALE = 0.9, /BLOCK

; Clean up our objects.
OBJ_DESTROY, [oModel, oContainer]

END

Version History

Introduced: 5.6

See Also

MAP_PROJ_INIT, MAP_PROJ_INVERSE
What’s New in IDL 5.6 MAP_PROJ_FORWARD

396 Chapter 3: New IDL Routines
MAP_PROJ_INIT

The MAP_PROJ_INIT function initializes a mapping projection, using either IDL’s
own map projections or map projections from the U.S. Geological Survey's General
Cartographic Transformation Package (GCTP). GCTP version 2.0 is included with
IDL.

Note
The !MAP system variable is unaffected by MAP_PROJ_INIT. To use the map
projection returned by MAP_PROJ_INIT for direct or object graphics, use the
MAP_PROJ_FORWARD and MAP_PROJ_INVERSE functions to convert
longitude/latitude values into Cartesian (x, y) coordinates before visualization.

This routine is written in the IDL language. Its source code can be found in
map_proj_init.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MAP_PROJ_INIT(Projection [, DATUM=value] [, /GCTP]
[, LIMIT=vector] [, /RADIANS] [, /RELAXED])

Keywords—Projection Parameters:

[, CENTER_AZIMUTH=value] [, CENTER_LATITUDE=value]
[, CENTER_LONGITUDE=value] [, FALSE_EASTING=value]
[, FALSE_NORTHING=value] [, HEIGHT=value]
[, HOM_AZIM_LONGITUDE=value] [, HOM_AZIM_ANGLE=value]
[, HOM_LATITUDE1=value] [, HOM_LATITUDE2=value]
[, HOM_LONGITUDE1=value] [, HOM_LONGITUDE2=value]
[, IS_ZONES=value] [, IS_JUSTIFY=value] [, MERCATOR_SCALE=value]
[, OEA_ANGLE=value] [, OEA_SHAPEM=value] [, OEA_SHAPEN=value]
[, ROTATION=value] [, SEMIMAJOR_AXIS=value] [, SEMIMINORAXIS=value]
[, SOM_INCLINATION=value] [, SOM_LONGITUDE=value]
[, SOM_PERIOD=value] [, SOM_RATIO=value] [, SOM_FLAG=value]
[, SOM_LANDSAT_NUMBER=value] [, SOM_LANDSAT_PATH=value]
[, SPHERE_RADIUS=value] [, STANDARD_PARALLEL=value]
[, STANDARD_PAR1=value] [, STANDARD_PAR2=value] [, SAT_TILT=value]
[, TRUE_SCALE_LATITUDE=value] [, ZONE=value]
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 397
Return Value

The result is a !MAP structure containing the map parameters, which can be used as
input to the map transformation functions MAP_PROJ_FORWARD and
MAP_PROJ_INVERSE.

Arguments

Projection

Set this argument to either a projection index or a scalar string containing the name of
the map projection, as described in following tables:

Projection Name Allowed Keyword Parameters

1 Stereographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

2 Orthographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

3 Lambert Conic SPHERE_RADIUS, STANDARD_PAR1,
STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE

4 Lambert Azimuthal SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

5 Gnomonic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

6 Azimuthal Equidistant SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

Table 3-28: IDL Projections
What’s New in IDL 5.6 MAP_PROJ_INIT

398 Chapter 3: New IDL Routines
7 Satellite SPHERE_RADIUS, HEIGHT, SAT_TILT,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

8 Cylindrical SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

9 Mercator SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

10 Mollweide SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

11 Sinusoidal SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

12 Aitoff SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

13 Hammer Aitoff SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

14 Albers Equal Area Conic SPHERE_RADIUS, STANDARD_PAR1,
STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE

15 Transverse Mercator SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

16 Miller Cylindrical SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

Projection Name Allowed Keyword Parameters

Table 3-28: IDL Projections (Continued)
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 399
The following are GCTP projections:

17 Robinson SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

18 Lambert Ellipsoid Conic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE

19 Goodes Homolosine SPHERE_RADIUS, CENTER_LONGITUDE

Projection Name Allowed Keyword Parameters

101 UTM CENTER_LONGITUDE,
CENTER_LATITUDE, ZONE

102 State Plane ZONE

103 Albers Equal Area SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

104 Lambert Conformal Conic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

105 Mercator SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
TRUE_SCALE_LATITUDE,
FALSE_EASTING, FALSE_NORTHING

Table 3-29: GCTP Projections

Projection Name Allowed Keyword Parameters

Table 3-28: IDL Projections (Continued)
What’s New in IDL 5.6 MAP_PROJ_INIT

400 Chapter 3: New IDL Routines
106 Polar Stereographic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

107 Polyconic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

108 Equidistant Conic A SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PARALLEL,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

208 Equidistant Conic B SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

109 Transverse Mercator SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

110 Stereographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

111 Lambert Azimuthal SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

Projection Name Allowed Keyword Parameters

Table 3-29: GCTP Projections (Continued)
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 401
112 Azimuthal SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

113 Gnomonic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

114 Orthographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

115 Near Side Perspective SPHERE_RADIUS, HEIGHT,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

116 Sinusoidal SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

117 Equirectangular SPHERE_RADIUS,
CENTER_LONGITUDE,
TRUE_SCALE_LATITUDE,
FALSE_EASTING, FALSE_NORTHING

118 Miller Cylindrical SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

119 Van der Grinten SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

Projection Name Allowed Keyword Parameters

Table 3-29: GCTP Projections (Continued)
What’s New in IDL 5.6 MAP_PROJ_INIT

402 Chapter 3: New IDL Routines
120 Hotine Oblique Mercator A SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING, HOM_LONGITUDE1,
HOM_LATITUDE1, HOM_LONGITUDE2,
HOM_LATITUDE2

220 Hotine Oblique Mercator B SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
HOM_AZIM_ANGLE,
HOM_AZIM_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

121 Robinson SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

122 Space Oblique Mercator A SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
SOM_INCLINATION, SOM_LONGITUDE,
FALSE_EASTING, FALSE_NORTHING,
SOM_PERIOD, SOM_RATIO, SOM_FLAG

222 Space Oblique Mercator B SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
SOM_LANDSAT_NUMBER,
SOM_LANDSAT_PATH, FALSE_EASTING,
FALSE_NORTHING

123 Alaska Conformal SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
FALSE_EASTING, FALSE_NORTHING

124 Interrupted Goode SPHERE_RADIUS

125 Mollweide SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

126 Interrupted Mollweide SPHERE_RADIUS

Projection Name Allowed Keyword Parameters

Table 3-29: GCTP Projections (Continued)
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 403
Keywords

Note
The following keywords apply to all projections.

DATUM

Set this keyword to either an integer code or a scalar string containing the name of the
datum to use for the ellipsoid. The default value depends upon the projection
selected, but is either the Clarke 1866 ellipsoid (datum 0), or a sphere of radius
6370.997 km (datum 19).

127 Hammer SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

128 Wagner IV SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

129 Wagner VII SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

130 Oblated Equal Area SPHERE_RADIUS, OEA_SHAPEM,
OEA_SHAPEN, CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING, OEA_ANGLE

131 Integerized Sinusoidal SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING, IS_ZONES,
IS_JUSTIFY

Projection Name Allowed Keyword Parameters

Table 3-29: GCTP Projections (Continued)
What’s New in IDL 5.6 MAP_PROJ_INIT

404 Chapter 3: New IDL Routines
The following datums (or spheroids) are available for use with the DATUM keyword:

Index Name
Semimajor

axis (m)
Semiminor

axis (m)

0 Clarke 1866 6378206.4 6356583.8

1 Clarke 1880 6378249.145 6356514.86955

2 Bessel 6377397.155 6356078.96284

3 International 1967 6378157.5 6356772.2

4 International 1909 6378388.0 6356911.94613

5 WGS 72 6378135.0 6356750.519915

6 Everest 6377276.3452 6356075.4133

7 WGS 66 6378145.0 6356759.769356

8 GRS 1980/WGS 84 6378137.0 6356752.31414

9 Airy 6377563.396 6356256.91

10 Modified Everest 6377304.063 6356103.039

11 Modified Airy 6377340.189 6356034.448

12 Walbeck 6378137.0 6356752.314245

13 Southeast Asia 6378155.0 6356773.3205

14 Australian National 6378160.0 6356774.719

15 Krassovsky 6378245.0 6356863.0188

16 Hough 6378270.0 6356794.343479

17 Mercury 1960 6378166.0 6356784.283666

18 Modified Mercury 1968 6378150.0 6356768.337303

19 Sphere 6370997.0 6370997.0

Table 3-30: Datums available for use by MAP_PROJ_INIT.
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 405
Note
For many projections, you can specify your own datum by using either the
SEMIMAJOR_AXIS and SEMIMINOR_AXIS or the SPHERE_RADIUS
keywords.

GCTP

Set this keyword to indicate that the GCTP library should be used for the projection.
By default, MAP_PROJ_INIT uses the IDL projection library. This keyword is
ignored if the projection exists only in one system (GCTP or IDL), or if the
Projection argument is specified as an index.

LIMIT

Set this keyword to a four-element vector of the form

[Latmin, Lonmin, Latmax, Lonmax]

that specifies the boundaries of the region to be mapped. (Lonmin, Latmin) and
(Lonmax, Latmax) are the longitudes and latitudes of two points diagonal from each
other on the region's boundary.

Note
When using MAP_PROJ_FORWARD, if the longitude range in LIMIT is less than
or equal to 180 degrees, map clipping is performed in lat/lon coordinates before the
transform. If the longitude range is greater than 180 degrees, map clipping is done
in Cartesian coordinates after the transform. For non-cylindrical projections,
clipping after the transformation to Cartesian coordinates means that some lat/lon
points that fall outside the bounds specified by LIMIT may not be clipped. This
occurs when the transformed lat/lon points fall inside the cartesian clipping
rectangle.

RADIANS

Set this keyword to indicate that all parameters that represent angles are specified in
radians rather than degrees.

RELAXED

If this keyword is set, any projection parameters which do not apply to the specified
projection will be quietly ignored. By default, MAP_PROJ_INIT will issue errors for
parameters that do not apply to the specified projection.
What’s New in IDL 5.6 MAP_PROJ_INIT

406 Chapter 3: New IDL Routines
Projection Keywords

The following keywords apply only to some projections. Consult the list under
“Projection” on page 397 to determine which keywords apply to the projection you
have selected.

CENTER_AZIMUTH

Set this keyword to the angle of the central azimuth, in degrees east of North. The
default is 0 degrees. The pole is placed at an azimuth of CENTRAL_AZIMUTH
degrees counterclockwise of North, as specified by the ROTATION keyword.

CENTER_LATITUDE

Set this keyword to the latitude of the point on the earth’s surface to be mapped to the
center of the projection plane. Latitude is measured in degrees North of the equator
and must be in the range: -90 to +90. The default value is zero.

CENTER_LONGITUDE

Set this keyword to the longitude of the point on the earth’s surface to be mapped to
the center of the map projection. Longitude is measured in degrees east of the
Greenwich meridian and must be in the range: -360 to +360. The default value is
zero.

FALSE_EASTING

Set this keyword to the false easting value (in meters) to be added to each x
coordinate for the forward transform, or subtracted from each x coordinate for the
inverse transform.

FALSE_NORTHING

Set this keyword to the false northing value (in meters) to be added to each y
coordinate for the forward transform, or subtracted from each y coordinate for the
inverse transform.

HEIGHT

Set this keyword to the height (in meters) above the earth’s surface for satellite
projections.
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 407
HOM_AZIM_LONGITUDE

Set this keyword to the longitude of the central meridian point where the azimuth
occurs.

HOM_AZIM_ANGLE

Set this keyword to the azimuth angle, measured in degrees or radians, east of a
north-south line that intersects the center line. The center line is defined as the great
circle path along which the Mercator cylinder touches the sphere.

HOM_LATITUDE1

Set this keyword to the latitude of the first point on the center line. The center line is
defined as the great circle path along which the Mercator cylinder touches the sphere.

HOM_LATITUDE2

Set this keyword to the latitude of the second point on the center line. The center line
is defined as the great circle path along which the Mercator cylinder touches the
sphere.

HOM_LONGITUDE1

Set this keyword to the longitude of the first point on the center line. The center line
is defined as the great circle path along which the Mercator cylinder touches the
sphere.

HOM_LONGITUDE2

Set this keyword to the longitude of the second point on the center line. The center
line is defined as the great circle path along which the Mercator cylinder touches the
sphere.

IS_ZONES

Set this keyword to the number of longitudinal zones to include in the projection.
What’s New in IDL 5.6 MAP_PROJ_INIT

408 Chapter 3: New IDL Routines
IS_JUSTIFY

Set this keyword to a flag indicating what to do with rows with an odd number of
columns. The possible values are:

MERCATOR_SCALE

Set this keyword to the scale factor at the central meridian (Transverse Mercator
projection) or the center of the projection (Hotine Oblique Mercator projection). For
the Transverse Mercator projection, the default scale is 0.9996.

OEA_ANGLE

Set this keyword to the Oblated Equal Area oval rotation angle.

OEA_SHAPEM

Set this keyword to the Oblated Equal Area shape parameter m. The value of
OEA_SHAPEM determines the horizontal flatness of the oblong region, and is
usually set to a value between one and three.

OEA_SHAPEN

Set this keyword to the Oblated Equal Area oval shape parameter n. The value of
OEA_SHAPEN determines the vertical flatness of the oblong region, and is usually
set to a value between one and three.

Note
Setting both OEA_SHAPEM and OEA_SHAPEN equal to two is equivalent to
using the Lambert Azimuthal projection.

Value Description

0 Indicates the extra column is on the right of the projection Y axis.

1 Indicates the extra column is on the left of the projection Y axis.

2 Calculate an even number of columns.

Table 3-31: IS_JUSTIFY Keyword Values
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 409
ROTATION

Set this keyword to the angle through which the North direction should be rotated
around the line between the earth’s center and the point (CENTER_LONGITUDE,
CENTER_LATITUDE). ROTATION is measured in degrees with the positive
direction being clockwise rotation around the line. Values should be in the range
-180 to +180. The default value is zero.

Note
If the center of the map is at the North pole, North is in the direction
CENTER_LONGITUDE + 180. If the origin is at the South pole, North is in the
direction CENTER_LONGITUDE.

SEMIMAJOR_AXIS

Set this keyword to the length (in meters) of the semimajor axis of the reference
ellipsoid. The default is either the Clarke 1866 datum (6378206.4 m) or the Sphere
radius (6370997 m), depending upon the projection.

SEMIMINOR_AXIS

Set this keyword to the length (in meters) of the semiminor axis of the reference
ellipsoid. The default is either the Clarke 1866 datum (6356583.8 m) or the Sphere
radius (6370997 m), depending upon the projection.

SOM_INCLINATION

Set this keyword to the orbit inclination angle of the ascending node, counter-
clockwise from equator.

SOM_LONGITUDE

Set this keyword to the longitude of the ascending orbit at the equator.

SOM_PERIOD

Set this keyword to the period in minutes of the satellite revolution.

SOM_RATIO

Set this keyword to the Landsat ratio to compensate for confusion at the northern end
of orbit. A typical value is 0.5201613.
What’s New in IDL 5.6 MAP_PROJ_INIT

410 Chapter 3: New IDL Routines
SOM_FLAG

Set this keyword to the end of path flag for Landsat, where 0 is the start and 1 is the
end.

SOM_LANDSAT_NUMBER

Set this keyword to the Landsat satellite number.

SOM_LANDSAT_PATH

Set this keyword to the Landsat path number (use 1 for Landsat 1, 2 and 3; use 2 for
Landsat 4, 5 and 6).

SPHERE_RADIUS

Set this keyword to the radius (in meters) of the reference sphere. The default is
6370997 m.

STANDARD_PARALLEL

Set this keyword to the latitude of the standard parallel along which the scale is true.

STANDARD_PAR1

Set this keyword to the latitude of the first standard parallel along which the scale is
true.

STANDARD_PAR2

Set this keyword to the latitude of the second standard parallel along which the scale
is true.

SAT_TILT

Set this keyword to the downward tilt in degrees of the camera, in degrees from the
projection horizontal.

TRUE_SCALE_LATITUDE

Set this keyword to the latitude of true scale.

ZONE

Set this keyword to an integer giving the zone for the GCTP UTM projection or
GCTP State Plane projection.
MAP_PROJ_INIT What’s New in IDL 5.6

Chapter 3: New IDL Routines 411
Note
For the UTM projection, you may also use the CENTER_LONGITUDE and
CENTER_LATITUDE keywords to set the zone. Internally, the ZONE value will
be computed from the longitude and latitude.

Examples

See MAP_PROJ_FORWARD for an example of using this function.

Version History

Introduced: 5.6

See Also

MAP_PROJ_FORWARD, MAP_PROJ_INVERSE, MAP_SET
What’s New in IDL 5.6 MAP_PROJ_INIT

412 Chapter 3: New IDL Routines
MAP_PROJ_INVERSE

The MAP_PROJ_INVERSE function transforms map coordinates from Cartesian
(x, y) coordinates to longitude and latitude, using either the !MAP system variable or
a supplied map projection variable.

Syntax

Result = MAP_PROJ_INVERSE (X [, Y] [, MAP_STRUCTURE=value]
[, /RADIANS])

Return Value

The result is a (2, n) array containing the longitude/latitude coordinates.

Arguments

X

An n-element vector containing the x values. If the Y argument is omitted, X must be
a (2, n) array of X and Y pairs.

Y

An n-element vector containing y values. If this argument is omitted, X must be a
(2, n) array of X and Y pairs.

Keywords

MAP_STRUCTURE

Set this keyword to a !MAP structure variable containing the projection parameters,
as constructed by the MAP_PROJ_INIT. If this keyword is omitted, the !MAP
system variable is used.

RADIANS

Set this keyword to indicate that the returned longitude and latitude coordinates
should be expressed in radians. By default, returned coordinates are expressed in
degrees.
MAP_PROJ_INVERSE What’s New in IDL 5.6

Chapter 3: New IDL Routines 413
Version History

Introduced: 5.6

See Also

MAP_PROJ_FORWARD, MAP_PROJ_INIT
What’s New in IDL 5.6 MAP_PROJ_INVERSE

414 Chapter 3: New IDL Routines
MATRIX_POWER

The MATRIX_POWER function computes the product of a matrix with itself. For
example, the fifth power of array A is A # A # A # A # A. Negative powers are
computed using the matrix inverse of the positive power.

Syntax

Result = MATRIX_POWER(Array, N [, /DOUBLE] [, STATUS=value])

Return Value

The result is a square array containing the value of the matrix raised to the specified
power. A power of zero returns the identity matrix.

Arguments

Array

A square, two-dimensional array of any numeric type.

N

An integer representing the power. N may be positive or negative.

Keywords

DOUBLE

Set this keyword to return a double-precision result. Explicitly set this keyword equal
to zero to return a single-precision result. The default return type depends upon the
precision of Array.

Note
Computations are always performed using double-precision arithmetic.
MATRIX_POWER What’s New in IDL 5.6

Chapter 3: New IDL Routines 415
STATUS

Set this keyword equal to a named variable that will contain the status of the matrix
inverse for negative powers. Possible values are:

For non-negative powers, STATUS is always set to 0.

Example

Print an array to the one millionth power:

array = [[0.401d, 0.600d], $
[0.525d, 0.475d]]

PRINT, MATRIX_POWER(array, 1e6)

IDL prints:

2.4487434e+202 2.7960773e+202
2.4465677e+202 2.7935929e+202

Version History

Introduced: 5.6

See Also

MATRIX_MULTIPLY, “Multiplying Arrays” in Chapter 22 of the Using IDL manual

Value Description

0 Successful completion.

1 Singular array (which indicates that the inversion is invalid).

2 Warning that a small pivot element was used and that
significant accuracy was probably lost.

Table 3-32: STATUS Keyword Values
What’s New in IDL 5.6 MATRIX_POWER

416 Chapter 3: New IDL Routines
PRODUCT

The PRODUCT function returns the product of elements within an array. The product
of the array elements over a given dimension is returned if the Dimension argument is
present. Because the product can easily overflow, the product is computed using
double-precision arithmetic and the Result is double precision.

Tip
If your array has a mix of very large and very small values, the product may
underflow or overflow during the computation, even though the final result would
be within double-precision limits. In this case, you should not use PRODUCT, but
instead compute the product by taking the logarithm, using the TOTAL function,
and then taking the exponential: Result = EXP(TOTAL(ALOG(Array))).

Syntax

Result = PRODUCT(Array [, Dimension] [, /CUMULATIVE] [, /NAN])

Return Value

Returns the product of the elements of Array.

Arguments

Array

The array for which to compute the product. This array can be of any basic type
except string.

Dimension

An optional argument specifying the dimension over which to compute the product,
starting at one. If this argument is not present or zero, the product of all the array
elements is returned. If this argument is present, the result is an array with one less
dimension than Array. For example, if the dimensions of Array are N1, N2, N3, and
Dimension is 2, the dimensions of the result are (N1, N3), and element (i,j) of the
result contains the product:

Ri j, Ai k j, ,

k 0=

N2 1–

∏=
PRODUCT What’s New in IDL 5.6

Chapter 3: New IDL Routines 417
Keywords

CUMULATIVE

If this keyword is set, the result is an array of the same size as the input, with each
element, i, containing the product of the input array elements 0 to i. This keyword
also works with the Dimension parameter, in which case the cumulative product is
performed over the given dimension.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data with the value 1.

Thread Pool Keywords

This routine is written to make use of IDL's thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix I, “Thread Pool
Keywords” in the IDL Reference Guide.

Examples

To find the product of all elements in a one-dimensional array:

; Define a one-dimensional array:
array = [20, 10, 5, 5, 3]

; Find the product of the array elements:
prod = PRODUCT(array)

; Print the results:
PRINT, 'Product of Array = ', prod

IDL prints:

Product of Array = 15000.000

Now find the product of elements in a two-dimensional array:

; Define a two-dimensional array:
array = FINDGEN(4,4) + 1
What’s New in IDL 5.6 PRODUCT

418 Chapter 3: New IDL Routines
; Find the product of all array elements:
prodAll = PRODUCT(array)

; Find the product along the first dimension:
prod1 = PRODUCT(array, 1)

; Find the product along the second dimension:
prod2 = PRODUCT(array, 2)

; Print the results:
PRINT, 'Product of all elements = ', prodAll
PRINT, 'Product along first dimension: '
PRINT, prod1
PRINT, 'Product along second dimension: '
PRINT, prod2

IDL prints:

Product of all elements 2.0922790e+013
Product along first dimension:
24.000000 1680.0000 11880.000 43680.000

Product along second dimension:
585.00000 1680.0000 3465.0000 6144.0000

Version History

Introduced: 5.6

See Also

FACTORIAL, TOTAL
PRODUCT What’s New in IDL 5.6

Chapter 3: New IDL Routines 419
REGISTER_CURSOR

The REGISTER_CURSOR procedure associates the given name with the given
cursor information. This name can then be used with the
IDLgrWindow::SetCurrentCursor method.

Syntax

REGISTER_CURSOR, Name, Image[, MASK=value] [, HOTSPOT=value]
[, /OVERWRITE]

Arguments

Name

This argument sets the name to associate with this cursor. The name is case-
insensitive. Once registered, the name can be used with the
IDLgrWindow::SetCurrentCursor method.

Image

Set this argument to a 16 line by 16 column bitmap, contained in a 16-element short
integer vector, specifying the cursor pattern. The offset from the upper-left pixel to
the point that is considered the "hot spot" can be provided using the HOTSPOT
keyword.

Keywords

MASK

This keyword can be used to simultaneously specify the mask that should be used. In
the mask, bits that are set indicate bits in the IMAGE that should be seen and bits that
are not are "masked out".

HOTSPOT

Set this keyword to a two-element vector specifying the [x, y] pixel offset of the
cursor "hot spot", the point which is considered to be the mouse position, from the
lower-left corner of the cursor image. The cursor image is displayed top-down (the
first row is displayed at the top).
What’s New in IDL 5.6 REGISTER_CURSOR

420 Chapter 3: New IDL Routines
OVERWRITE

By default, if the cursor already exists, the values are not changed. By setting this
keyword to true, the current cursor value is updated with the values provided by this
routine call.

Version History

Introduced: 5.6

See Also

IDLgrWindow::SetCurrentCursor
REGISTER_CURSOR What’s New in IDL 5.6

Chapter 3: New IDL Routines 421
SHMDEBUG

The SHMDEBUG function enables a debugging mode in which IDL prints an
informational message (including a traceback) every time a variable created with the
SHMVAR function loses its reference to the underlying memory segment created by
SHMMAP. There are many reasons why a such a variable might lose its reference;
some reasons have to do with the internal implementation of the IDL interpreter and
are not obvious or visible to the IDL user.

Note
The SHMDEBUG debugging mode should be used for problem solving only, and
should not be part of production code.

Syntax

Result = SHMDEBUG(Enable)

Return Value

SHMDEBUG returns the previous setting of the debugging state.

Arguments

Enable

Set this argument equal to a non-zero value to enable debugging, or to zero to disable
debugging.

Examples

Create a memory segment, tie a variable to it, enable debugging, and then cause the
variable to lose the reference:

old_debug = SHMDEBUG(1) ; Enable debug mode
SHMMAP, 'A', 100 ; 100 element floating vector
z = SHMVAR('A') ; Variable tied to segment
z[0] = FINDGEN(100) ; Does not lose reference
z = FINDGEN(100) ; Loses reference
% Variable released shared memory segment: A
% Released at: $MAIN$
What’s New in IDL 5.6 SHMDEBUG

422 Chapter 3: New IDL Routines
The assignment z[0] = FINDGEN(100) explicitly uses subscripting to assign the
FINDGEN value to the array. Under normal circumstances, using subscripting in this
way on the left hand side of an assignment is inefficient and not recommended. In
this case, however, it has the desirable side effect of causing the variable Z to
maintain its connection to its existing underlying memory. In contrast, the second
(normally more desirable) assignment without the subscript causes IDL to allocate
different memory for the variable Z, with the side effect of losing the connection to
the shared memory segment.

Version History

Introduced: 5.6

See Also

SHMMAP, SHMUNMAP, SHMVAR
SHMDEBUG What’s New in IDL 5.6

Chapter 3: New IDL Routines 423
SHMMAP

The SHMMAP procedure maps anonymous shared memory, or local disk files, into
the memory address space of the currently executing IDL process. Mapped memory
segments are associated with an IDL array specified by the user as part of the call to
SHMMAP. The type and dimensions of the specified array determine the length of
the memory segment.

The array can be of any type except pointer, object reference, or string. (Structure
types are allowed as long as they do not contain any pointers, object references, or
strings.) By default, the array type is single-precision floating-point; other types can
be chosen by specifying the appropriate keyword.

Once such a memory segment exists, it can be tied to an actual IDL variable using the
SHMVAR function, or unmapped using SHMUNMAP.

Why Use Mapped Memory?

• Shared memory is often used for interprocess communication. Any process
that has a shared memory segment mapped into its address space is able to
“see” any changes made by any other process that has access to the same
segment. Shared memory is the default for SHMMAP, unless the FILENAME
keyword is specified.

• Memory-mapped files allow you to treat the contents of a local disk file as if it
were simple memory. Reads and writes to such memory are automatically
written to the file by the operating system using its standard virtual memory
mechanisms. Access to mapped files has the potential to be faster than
standard Input/Output using Read/Write system calls because it does not go
through the expensive system call interface, and because it does not require the
operating system to copy data between user and kernel memory buffers when
performing the I/O. However, it is not as general or flexible as the standard I/O
mechanisms, and is therefore not a replacement for them.

Warning
Unlike most IDL functionality, incorrect use of SHMMAP can corrupt or even
crash your IDL process. Proper use of these low level operating system features
requires systems programming experience, and is not recommended for those
without such experience. You should be familiar with the memory and file mapping
features of your operating system and the terminology used to describe such
features.
What’s New in IDL 5.6 SHMMAP

424 Chapter 3: New IDL Routines
SHMMAP uses the facilities of the underlying operating system. Any of several
alternatives may be used, as described in “Types Of Memory Segments” on page 430.
SHMMAP uses the following rules, in the specified order, to determine which
method to use:

1. If the FILENAME keyword is present, SHMMAP creates a memory mapped
file segment.

2. If the SYSV keyword is used under UNIX, a System V shared memory
segment is created or attached. Use of the SYSV keyword under Windows will
cause an error to be issued.

3. If the LOCAL_MEMORY keyword is present, a local memory segment is
created.

4. If none of the above options are specified, SHMMAP creates an anonymous
shared memory segment. Under UNIX, this is done with Posix shared memory.
Under Windows, the CreateFileMapping() system call is used.

Syntax

SHMMAP [, SegmentName] [, D1, ..., D8] [, /BYTE] [, /COMPLEX]
[, /DCOMPLEX] [, /DESTROY_SEGMENT] [, DIMENSION=value] [, /DOUBLE]
[, FILENAME=value] [, /FLOAT] [, GET_NAME=value]
[, GET_OS_HANDLE=value] [, /INTEGER] [, /L64] [, /LONG] [, OFFSET=value]
[, OS_HANDLE=value] [, /PRIVATE] [, SIZE=value] [, /SYSV]
[, TEMPLATE=value] [, TYPE=value] [, /UINT] [, /UL64] [, /ULONG]

Arguments

SegmentName

A scalar string supplying the name by which IDL will refer to the shared memory
segment. This name is only used by IDL, and does not necessarily correspond to the
name used for the shared memory segment by the underlying operating system. See
the discussion of the OS_HANDLE keyword for more information on the underlying
operating system name. If SegmentName is not specified, IDL will generate a unique
name. The SegmentName can be obtained using the GET_NAME keyword.

Di

The dimensions of the result. The Di arguments can be either a single array
containing the dimensions or a sequence of scalar dimensions. Up to eight
dimensions can be specified.
SHMMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 425
Keywords

BYTE

Set this keyword to specify that the memory segment should be treated as a byte
array.

COMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
single-precision floating-point array.

DCOMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
double-precision floating-point array.

DESTROY_SEGMENT

The UNIX anonymous shared memory mechanisms (Posix shm_open() and System
V shmget()) create shared memory segments that are not removed from the
operating system kernel until explicitly destroyed (or the system is rebooted). At any
time, a client program can attach to such an existing segment, read or write to it, and
then detach. This can be convenient in situations where the need for the shared
memory is long lived, and programs that need it come and go. It also can create a
problem, however, in that shared memory segments that are not explicitly destroyed
can cause memory leaks in the operating system. Hence, it is important to properly
destroy such segments when they are no longer required.

For UNIX anonymous shared memory (Posix or System V), the default behavior is
for IDL to destroy any shared memory segments it created when the segments are
unmapped, and not to destroy segments it did not create. The DESTROY_SEGMENT
keyword is used to override this default: set DESTROY_SEGMENT to 1 (one) to
indicate that IDL should destroy the segment when it is unmapped, or 0 (zero) to
indicate that it should not destroy it. All such destruction occurs when the segment is
unmapped (via the SHMUNMAP procedure) and not during the call to SHMMAP.

The DESTROY_SEGMENT keyword is ignored under the Windows operating
system. Under UNIX, it is ignored for mapped files.

DIMENSION

Set this keyword equal to a vector of 1 to 8 elements specifying the dimensions of the
result. Setting this keyword is equivalent to specifying an array via the D argument.
What’s New in IDL 5.6 SHMMAP

426 Chapter 3: New IDL Routines
DOUBLE

Set this keyword to specify that the memory segment should be treated as a double-
precision floating-point array.

FILENAME

By default, SHMMAP maps anonymous shared memory. Set the FILENAME
keyword equal to a string containing the path name of a file to be mapped to create a
memory-mapped file. A shared mapped file can serve as shared memory between
unrelated processes. The primary difference between anonymous shared memory and
mapped files is that mapped files require a file of the specified size to exist in the
filesystem, whereas anonymous shared memory has no user-visible representation in
the filesystem.

Unless the PRIVATE keyword is also specified, changes made to such a mapped file
are written back to the file by the operating system, and are visible to any other
process that is mapping the same file.

Note
The non-private form of file mapping corresponds to the MAP_SHARED flag to the
UNIX mmap() function, or the PAGE_READWRITE to the Windows
CreateFileMapping() system call.

FLOAT

Set this keyword to specify that the memory segment should be treated as a single-
precision floating-point array.

GET_NAME

If SegmentName is not specified in a call to SHMMAP, IDL automatically generates
a name. Set this keyword equal to a named variable that will receive the name
assigned by IDL to the memory segment.

GET_OS_HANDLE

Set this keyword equal to a named variable that will receive the operating system
name (or handle) for the memory segment. The meaning of the operating system
handle depends on both the operating system and the type of memory segment used.
See the description of the OS_HANDLE keyword for details.
SHMMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 427
INTEGER

Set this keyword to specify that the memory segment should be treated as an integer
array.

L64

Set this keyword to specify that the memory segment should be treated as a 64-bit
integer array.

LONG

Set this keyword to specify that the memory segment should be treated as a longword
integer array.

OFFSET

If present and non-zero, this keyword specifies an offset (in bytes) from the start of
the shared memory segment or memory mapped file that will be used as the base
address for the IDL array associated with the memory segment.

Note
Most computer hardware is not able to access arbitrary data types at arbitrary
memory addresses. Data must be properly aligned for its type or the program will
crash with an alignment error (often called a bus error) when the data is accessed.
The specific rules differ between machines, but in many cases the address of a data
object must be evenly divisible by the size of that object. IDL will issue an error if
you specify an offset that is not valid for the array specified.

Note
The actual memory mapping primitives provided by the underlying operating
system require such offsets to be integer multiples of the virtual memory pagesize
(sometimes called the allocation granularity) for the system. This value is typically
a power of two such as 8K or 64K. In contrast, IDL allows arbitrary offsets as long
as they satisfy the alignment constraints of the data type. This is implemented by
mapping the page that contains the specified offset, and then adjusting the memory
address to point at the specified byte within that page. In rounding your offset
request back to the nearest page boundary, IDL may map slightly more memory
than your request would seem to require, but never more than a single page.
What’s New in IDL 5.6 SHMMAP

428 Chapter 3: New IDL Routines
OS_HANDLE

Set this keyword equal to the name (or handle) used by the underlying operating
system for the memory segment. If you do not specify the OS_HANDLE keyword,
SHMMAP will under some circumstances provide a default value. The specific
meaning and syntax of the OS_HANDLE depends on both the operating system and
the form of memory used. See the following sections for operating-system specific
behavior, and “Types Of Memory Segments” on page 430 for behavior differences
based on the form of memory used.

Posix (UNIX) Shared Memory

Use the OS_HANDLE keyword to supply a string value containing the system global
name of the shared memory segment. Such names are expected to start with a slash
(/) character, and not to contain any other slash characters. You can think of this as
mimicking the syntax for a file in the root directory of the system, although no such
file is created. See your system documentation for the shm_open() system call for
specific details. If you do not supply the OS_HANDLE keyword, SHMMAP will
create one for you by prepending a slash character to the value given by the
SegmentName argument.

UNIX System V Shared Memory

Use the OS_HANDLE keyword to supply an integer value containing the system
global identifier of an existing shared memory segment to attach to the process. If
you do not supply the OS_HANDLE keyword, then SHMMAP creates a new
memory segment. The identifier for this segment is available via the
GET_OS_HANDLE keyword.

Windows Anonymous Shared Memory

Use the OS_HANDLE keyword to supply a global system name for the mapping
object underlying the anonymous shared memory. If the OS_HANDLE keyword is
not specified, SHMMAP uses the value of the SegmentName argument.

UNIX Memory Mapped Files

The OS_HANDLE keyword has no meaning for UNIX memory mapped files and is
quietly ignored.

Windows Memory Mapped Files

Use the OS_HANDLE keyword to supply a global system name for the mapping
object underlying the mapped file. Use of the OS_HANDLE will ensure that every
process accessing the shared file will see a coherent view of its contents, and is thus
recommended for Windows memory mapped files. However, if you do not supply the
SHMMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 429
OS_HANDLE handle keyword for a memory mapped file, no global name is passed
to the Windows operating system, and a unique mapping object for the file will be
created.

PRIVATE

Set this keyword to specify that a private file mapping is required. In a private file
mapping, any changes written to the mapped memory are visible only to the process
that makes them, and such changes are not written back to the file. This keyword is
ignored unless the FILENAME keyword is also present.

Note
Due to limitations of the operating system, the PRIVATE keyword is not allowed
under the Windows 9x operating systems (Windows 95, Windows 98,
Windows ME). Windows NT and related systems do not have this limitation.

Note
Under UNIX, the private form of file mapping corresponds to the MAP_PRIVATE
flag to the mmap() system call. Under Windows, the non-private form corresponds
to the PAGE_WRITECOPY option to the Windows CreateFileMapping() system
call. When your process alters data within a page of privately mapped memory, the
operating system performs a copy on write operation in which the contents of that
page are copied to a new memory page visible only to your process. This private
memory usually comes from anonymous swap space or the system pagefile. Hence,
private mapped files require more system resources than shared mappings.

It is possible for some processes to use private mappings to a given file while others
use a public mapping to the same file. In such cases, the private mappings will see
changes made by the public processes up until the moment the private process itself
makes a change to the page. The pagesize granularity and timing issues between
such processes can make such scenarios very difficult to control. RSI does not
recommend combining simultaneous shared and private mappings to the same file.

SIZE

Set this keyword equal to a size vector specifying the type and dimensions to be
associated with the memory segment. The format of a size vector is given in the
description of the SIZE function.
What’s New in IDL 5.6 SHMMAP

430 Chapter 3: New IDL Routines
SYSV

Under UNIX, the default form of anonymous memory is Posix shared memory,
(shm_open() and shm_unlink()). Specify the SYSV keyword to use System V
shared memory (shmget(), shmctl(), and shmdt()) instead. On systems where it
is available, Posix shared memory is more flexible and has fewer limitations. System
V shared memory is available on all UNIX implementations, and serves as an
alternative when Posix memory does not exist, or when interfacing to exiting non-
IDL software that uses System V shared memory. See “Types Of Memory Segments”
on page 430 for a full discussion.

TEMPLATE

Set this keyword equal to a variable of the type and dimensions to be associated with
the memory segment.

TYPE

Set this keyword to specify the type code for the memory segment. See the
description of the SIZE function for a list of IDL type codes.

UINT

Set this keyword to specify that the memory segment should be treated as a unsigned
integer array.

ULONG

Set this keyword to specify that the memory segment should be treated as a unsigned
longword integer array.

UL64

Set this keyword to specify that the memory segment should be treated as a unsigned
64-bit integer array.

Types Of Memory Segments

SHMMAP is a relatively direct interface to the shared memory and file mapping
primitives provided by the underlying operating system. The SHMMAP interface
attempts to minimize the differences between these primitives, and for simple shared
memory use, it may not be necessary to fully understand the underlying mechanisms.
For most purposes, however, it is necessary to understand the operating system
primitives in order to understand how to use SHMMAP properly.
SHMMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 431
UNIX

In modern UNIX systems, the mmap() system call forms the primary basis for both
file mapping and anonymous shared memory. The existence of System V shared
memory, which is an older form of anonymous shared memory, adds some
complexity to the situation.

UNIX Memory Mapped Files

To memory map a file under UNIX, you open the file using the open() system call,
and then map it using mmap(). Once the file is mapped, you can close the file, and
the mapping remains in place until explicitly unmapped, or until the process exits or
calls exec() to run a different program.

If more than one process maps a file at the same time using the MAP_SHARED flag to
mmap(), then those processes will be able to see each others’ changes. Hence,
memory mapped files are one form of shared memory. Although the requirement for
a scratch file large enough to satisfy the mapping is inconvenient, limitations in
System V shared memory have led many UNIX programmers to use memory
mapped files in this way.

UNIX System V Shared Memory

Anonymous shared memory has traditionally been implemented via an API
commonly referred to as System V IPC. The shmget() function is used to create a
shared memory segment. The caller does not name the segment. Instead, the
operating system assigns each such segment a unique integer ID when it is created.
Once a shared memory segment exists, the shmdt() function can be used to map it
into the address space of any process that knows the identifier. This segment persists
in the OS kernel until it is explicitly destroyed via the shmctl() function, or until
the system is rebooted. This is true even if there are no processes currently mapped to
the segment. This can be convenient in situations where the need for the shared
memory is long lived, and programs that need it come and go. It also can create a
problem, however, since shared memory segments that are not explicitly destroyed
can cause memory leaks in the operating system. Hence, it is important to properly
destroy such segments when they are no longer required.

System V shared memory has been part of UNIX for a long time. It is available on all
UNIX platforms, and there is a large amount of existing code that uses it. There are,
however, some limitations on its utility:

• Many systems place extremely small limits on the size allowed for such
memory segments. These limits are often kernel parameters that can be
adjusted by the system administrator. The details are highly system dependent.
Consult your system documentation for details.
What’s New in IDL 5.6 SHMMAP

432 Chapter 3: New IDL Routines
• The caller does not have the option of naming the shared memory segment.
Instead, the operating system assigns an arbitrary number, which means that
processes that want to map such a segment have to have a mechanism for
finding the correct identifier to use before they can proceed. This, in turn,
requires some additional form of interprocess communication.

RSI recommends the use of Posix shared memory instead of System V shared
memory for those platforms that support it and applications that can use it. Under
UNIX, SHMMAP defaults to Posix shared memory to implement anonymous shared
memory. To use System V shared memory, you must specify the SYSV keyword. See
the Examples section below for an example of using System V shared memory.

Posix Shared Memory

Posix shared memory is a newer alternative for anonymous shared memory. It is part
of the UNIX98 standard, and although not all current UNIX systems support it, it will
in time be available on all UNIX systems. Posix shared memory uses the
shm_open() and ftruncate() system calls to create a memory segment that can
be accessed via a file descriptor. This descriptor is then used with the mmap() system
call to map the memory segment in the usual manner. The primary difference
between this, and simply using mmap() on a scratch file to implement shared
memory is that no scratch file is required (the disk space comes from the system
swapspace). As with System V shared memory, Posix shared memory segments exist
in the operating system until explicitly destroyed (using the shm_unlink() system
call). Unlike System V shared memory, but like all the other forms, Posix shared
memory allows the caller to supply the name of the segment. This simplifies the
situation in which multiple processes want to map the same segment. One of them
creates it, and the others simply map it, all of them using the same name to reference
it.

Posix shared memory is the default for SHMMAP on all UNIX platforms — even
those that do not yet support it. (To use System V shared memory instead, you must
specify the SYSV keyword.) There are several reasons for making Posix shared
memory the default for all UNIX platforms:

• To remain UNIX compliant, all platforms will have to implement the UNIX98
standard. Most have, and the remainder are currently in the process of doing
so. We believe that Posix shared memory will be available on all UNIX
systems very soon.

• Having different defaults for different UNIX platforms would cause
unnecessary confusion; the confusion would only increase as platforms added
support for Posix shared memory, causing the platform’s SHMMAP default to
change with later IDL releases. Since in most cases you need to know the
SHMMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 433
underlying mechanism in use, the default should be easy to determine, and
should not change over time.

• In the long run, it is desirable for the best option to be the default.

Microsoft Windows

Under Microsoft Windows, the CreateFileMapping() system call forms the basis
for shared memory as well as memory mapped files. To map a file, you open the file
and then pass the handle for that file to CreateFileMapping(). To create a region
of anonymous mapped memory instead of a mapped file, you pass a special file
handle (0xffffffff) to CreateFileMapping(). In this case, the disk space used
to back the shared memory is taken from the system pagefile.
CreateFileMapping() accepts an optional parameter (lpname), which if present,
is used to give the resulting memory mapping object a system global name. If you
specify such a name, and a mapping object with that name already exists, you will
receive a handle to the existing mapping object. Otherwise,
CreateFileMapping() creates a new mapping object for the file. Hence, to create
anonymous (no file) shared memory between unrelated processes, IDL calls
CreateFileMapping() with the special 0xffffffff file handle, and specifies a
global name for it.

A global name (supplied via the OS_HANDLE keyword) is the only name by which
an anonymous shared memory segment can be referenced within the system. Global
names are not required for memory mapped files, because each process can create a
separate mapping object and use it to refer to the same file. Although this does allow
the unrelated processes to see each others’ changes, their views of the file will not be
coherent (that is, identical). With coherent access, all processes see exactly the same
memory at exactly the same time because they are all mapping the same physical
page of memory. To get coherent access to a memory mapped file, every process
should specify the OS_HANDLE keyword to ensure that they use the same mapping
object. Coherence is only an issue when the contents of the file are altered; when
using read-only access to a mapped file, you need not be concerned with this issue.

The Windows operating system automatically destroys a mapping object when the
last process with an open handle to it closes that handle. Destruction of the mapping
object may be the result of an explicit call to CloseHandle(), or may involve an
implicit close that happens when the process exits. This differs from the UNIX
behavior for anonymous shared memory, and consequently the benefits and
disadvantages are reversed. The advantage is that it is not possible to forget to destroy
a mapping object, and end up with the operating system holding memory that is no
longer useful, but which cannot be freed. On the other hand, you must ensure that at
least one open handle to the object is open at all times, or the system might free an
object that you intended to use again.
What’s New in IDL 5.6 SHMMAP

434 Chapter 3: New IDL Routines
Note
Under Windows, when attaching to an existing memory object by providing the
global segment name, IDL is not able to verify that the memory segment returned
by the operating system is large enough to satisfy the IDL array specified to
SHMMAP for its type and size. If the segment is not large enough, the IDL program
will crash with an illegal memory access exception when it attempts to access
memory addresses beyond the end of the segment. Hence, the IDL user must ensure
that such pre-existing memory segments are long enough for the specified IDL
array.

Reference Counts And Memory Segment Lifecycle

You can see a list of all current memory segments created with SHMMAP by issuing
the statement

HELP,/SHARED_MEMORY

To access a current segment, it must be tied to an IDL variable using the SHMVAR
function. IDL maintains a reference count of the number of variables currently
accessing each memory segment, and does not allow a memory segment to be
removed from the IDL process as long as variables that reference it still exist.

SHMMAP will not allow you to create a new memory segment with the same
SegmentName as an existing segment. You should therefore be careful to pick unique
segment names. One way to ensure that segment names are unique is to not provide
the SegmentName argument when calling SHMMAP. In this case, SHMMAP will
automatically choose a unique name, which can be obtained using the GET_NAME
keyword.

The SHMUNMAP procedure is used to remove a memory segment from the IDL
session. In addition, it may remove the memory segment from the system. (Whether
the memory segment is removed from the system depends on the type of segment,
and on the arguments used with SHMMAP when the segment was initially attached.)
If no variables from the current IDL session are accessing the segment (that is, if the
IDL-maintained reference count is 0), the segment is removed immediately. If
variables in the current IDL session are still referencing the segment, the segment is
marked for removal when the last such variable drops its reference. Once SHMMAP
is called on a memory segment, no additional calls to SHMVAR are allowed for it
within the current IDL session; this means that a segment marked by SHMUNMAP
as UnmapPending cannot be used for new variables within the current IDL session.
SHMMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 435
Note
IDL has no way to determine whether a process other than itself is accessing a
shared memory segment. As a result, it is possible for IDL to destroy a memory
segment that is in use by another process. The specific details depend on the type of
memory segment, and the options used with SHMMAP when the segment was
loaded. When creating applications that use shared memory, you should ensure that
all applications that use the segment (be they instances of IDL or any other
application) communicate regarding their use of the shared memory and act in a
manner that avoids this pitfall.

Examples

Example 1

Create a shared memory segment of 1000000 double-precision data elements, and
then fill it with a DINDGEN ramp:

SHMMAP, 'MYSEG', /DOUBLE, 1000000
z = SHMVAR('MYSEG')
z[0] = DINDGEN(1000000)

Note
When using shared memory, using the explicit subscript of the variable (z, in this
case) maintains the variable’s connection with the shared memory segment. When
not using shared memory, assignment without subscripting is more efficient and is
recommended.

Example 2

Create the same shared memory segment as the previous example, but let IDL choose
the segment name:

SHMMAP, /DOUBLE, DIMENSION=[1000000], GET_NAME=segname
z = SHMVAR(segname)
z[0] = DINDGEN(1000000)

Example 3

Create the same shared memory segment as the previous example, but use a
temporary file, mapped into IDL’s address space, instead of anonymous shared
memory. The file needs to be the correct length for the data we will be mapping onto
it. We satisfy this need while simultaneously initializing it with the DINDGEN vector
by writing the vector to the file.
What’s New in IDL 5.6 SHMMAP

436 Chapter 3: New IDL Routines
The use of the OS_HANDLE keyword improves performance and correctness under
Windows while being quietly ignored under UNIX:

filename = FILEPATH('idl_scratch', /TMP)
OPENW, unit, filename, /GET_LUN
WRITEU, unit, DINDGEN(1000000)
CLOSE, unit
SHMMAP, /DOUBLE, DIMENSION=[1000000], GET_NAME=segname, $
FILENAME=filename, OS_HANDLE='idl_scratch'
z = SHMVAR(segname)

Example 4

Create an anonymous shared memory segment using UNIX System V shared
memory. Use of System V shared memory differs from the other methods in two
ways:

• The system identifier for the segment is a number chosen by the system instead
of a name selected by the user.

• With SYSV memory, you have to explicitly indicate whether the operation is a
create operation (no OS_HANDLE keyword) or merely an attach to an
existing segment (OS_HANDLE is present). The other methods create the
segment as needed, and will automatically attach to a memory segment with
the desired operating system handle if it already exists. The SHMMAP call
does not explicitly have to specify that the segment should be created.

In this example, we will use the type and size of the existing myvar variable to
determine the size of the memory:

SHMMAP, TEMPLATE=myvar, GET_NAME=segname, /SYSV, $
GET_OS_HANDLE=oshandle

In this case, the SYSV keyword forces the use of System V shared memory. The
absence of the OS_HANDLE keyword tells SHMMAP to create the segment, instead
of simply mapping an existing one. In a different IDL session running on the same
machine, if you knew the proper OS_HANDLE value for this segment, you could
attach to the segment created above as follows:

SHMMAP, TEMPLATE=myvar, GET_NAME=segname, /SYSV, $
OS_HANDLE=oshandle

In this case, the OS_HANDLE keyword tells SHMMAP the identifier of the memory
segment, causing it to attach to the existing segment instead of creating a new one.

Version History

Introduced: 5.6
SHMMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 437
See Also

SHMDEBUG, SHMUNMAP, SHMVAR
What’s New in IDL 5.6 SHMMAP

438 Chapter 3: New IDL Routines
SHMUNMAP

The SHMUNMAP procedure is used to remove a memory segment previously
created by SHMMAP from the IDL session. In addition, it may remove the memory
segment from the system. (Whether the memory segment is removed from the system
depends on the type of segment, and on the arguments used with SHMMAP when the
segment was initially attached.) If no variables from the current IDL session are
accessing the segment (that is, if the IDL-maintained reference count is 0), the
segment is removed immediately. If variables in the current IDL session are still
referencing the segment, the segment is marked for removal when the last such
variable drops its reference.

During this UnmapPending phase:

• The segment still exists in the system, so attempts to use SHMMAP to create a
new segment with the same SegmentName will fail.

• Additional calls to SHMVAR to attach new variables to this segment will fail.

Note
IDL has no way to determine whether a process other than itself is accessing a
shared memory segment. As a result, it is possible for IDL to destroy a memory
segment that is in use by another process. The specific details depend on the type of
memory segment, and the options used with SHMMAP when the segment was
loaded. When creating applications that use shared memory, you should ensure that
all applications that use the segment (be they instances of IDL or any other
application) communicate regarding their use of the shared memory and act in a
manner that avoids this pitfall.

Syntax

SHMUNMAP, SegmentName

Arguments

SegmentName

A scalar string containing the IDL name for the shared memory segment, as assigned
by SHMMAP.
SHMUNMAP What’s New in IDL 5.6

Chapter 3: New IDL Routines 439
Examples

To destroy a memory segment previously created by SHMMAP with the segment
name myseg:

SHMUNMAP, 'myseg'

Version History

Introduced: 5.6

See Also

SHMDEBUG, SHMMAP, SHMVAR
What’s New in IDL 5.6 SHMUNMAP

440 Chapter 3: New IDL Routines
SHMVAR

The SHMVAR function creates an IDL array variable that uses the memory from a
current mapped memory segment created by the SHMMAP procedure. Variables
created by SHMVAR are used in much the same way as any other IDL variable, and
provide the IDL user with the ability to alter the contents of anonymous shared
memory or memory mapped files.

By default, the variable created by SHMVAR is given the type and dimensions that
were specified to SHMMAP when the memory segment was created. However, this
default can be changed by SHMVAR via a variety of keywords as well as via the Di
arguments. The created array can be of any type except for pointer, object reference,
or string. Structure types are allowed as long as they do not contain any pointers,
object references, or strings.

Syntax

Result = SHMVAR(SegmentName [, D1, ..., D8] [, /BYTE] [, /COMPLEX]
[, /DCOMPLEX] [, DIMENSION=value] [, /DOUBLE] [, /FLOAT] [, /INTEGER]
[, /L64] [, /LONG] [, SIZE=value] [, TEMPLATE=value] [, TYPE=value] [, /UINT]
[, /UL64] [, /ULONG])

Return Value

An IDL array variable that uses memory from a the specified mapped memory
segment.

Arguments

SegmentName

A scalar string supplying the IDL name for the shared memory segment, as assigned
by SHMMAP.

Di

The dimensions of the result. The Di arguments can be either a single array
containing the dimensions or a sequence of scalar dimensions. Up to eight
dimensions can be specified. If no dimensions are specified, the parameters specified
to SHMMAP are used.
SHMVAR What’s New in IDL 5.6

Chapter 3: New IDL Routines 441
Keywords

BYTE

Set this keyword to specify that the memory segment should be treated as a byte
array.

COMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
single-precision floating-point array.

DCOMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
double-precision floating-point array.

DIMENSION

Set this keyword equal to a vector of 1 to 8 elements specifying the dimensions of the
result. This is equivalent to the array form of the Di plain arguments. If no dimensions
are specified, the parameters specified to SHMMAP are used.

DOUBLE

Set this keyword to specify that the memory segment should be treated as a double-
precision floating-point array.

FLOAT

Set this keyword to specify that the memory segment should be treated as a single-
precision floating-point array.

INTEGER

Set this keyword to specify that the memory segment should be treated as an integer
array.

L64

Set this keyword to specify that the memory segment should be treated as a 64-bit
integer array.
What’s New in IDL 5.6 SHMVAR

442 Chapter 3: New IDL Routines
LONG

Set this keyword to specify that the memory segment should be treated as a longword
integer array.

SIZE

Set this keyword equal to a size vector specifying the type and dimensions to be
associated with the memory segment. The format of a size vector is given in the
description of the SIZE function. If no dimensions are specified, the parameters
specified to SHMMAP are used.

TEMPLATE

Set this keyword equal to a variable of the type and dimensions to be associated with
the memory segment. If no dimensions are specified, the parameters specified to
SHMMAP are used.

TYPE

Set this keyword to specify the type code for the memory segment. See the
description of the SIZE function for a list of IDL type codes.

UINT

Set this keyword to specify that the memory segment should be treated as a unsigned
integer array.

ULONG

Set this keyword to specify that the memory segment should be treated as a unsigned
longword integer array.

UL64

Set this keyword to specify that the memory segment should be treated as a unsigned
64-bit integer array.

Examples

See the examples given for the SHMMAP procedure.

Version History

Introduced: 5.6
SHMVAR What’s New in IDL 5.6

Chapter 3: New IDL Routines 443
See Also

SHMDEBUG, SHMMAP, SHMUNMAP
What’s New in IDL 5.6 SHMVAR

444 Chapter 3: New IDL Routines
SKIP_LUN

The SKIP_LUN procedure reads data in an open file and moves the file pointer. It is
useful in situations where it is necessary to skip over a known amount of data in a file
without the requirement of having the data available in an IDL variable. SKIP_LUN
can skip over a fixed amount of data, specified in bytes or lines of text, or can skip
over the remainder of the input file from the current position to end of file. Since
SKIP_LUN actually performs an input operation to advance the file pointer, it is not
as efficient as POINT_LUN for skipping over a fixed number of bytes in a disk file.
For that reason, use of POINT_LUN is preferred when possible. SKIP_LUN is
especially useful in situations such as:

• Skipping over a fixed number of lines of text. Since lines of text can have
variable length, it can be difficult to use POINT_LUN to skip them.

• Skipping data from a file that is not a regular disk file (for example, data from
an internet socket).

Syntax

SKIP_LUN, FromUnit, [, Num] [, /EOF] [, /LINES]
[, /TRANSFER_COUNT=variable]

Arguments

FromUnit

An integer that specifies the file unit for the file in which the file pointer is to be
moved. Data in FromUnit is skipped, starting at the current position of the file
pointer. The file pointer is advanced as data is read and skipped. The file specified by
FromUnit must be open, and must not have been opened with the RAWIO keyword
to OPEN.

Num

The amount of data to skip. This value is specified in bytes, unless the LINES
keyword is specified, in which case it is taken to be the number of text lines. If Num
is not specified, SKIP_LUN acts as if the EOF keyword has been set, and skips all
data in FromUnit (the source file) from the current position of the file pointer to the
end of the file.
SKIP_LUN What’s New in IDL 5.6

Chapter 3: New IDL Routines 445
If Num is specified and the source file comes to end of file before the specified
amount of data is skipped, SKIP_LUN issues an end-of-file error. The EOF keyword
alters this behavior.

Keywords

EOF

Set this keyword to ignore the value given by Num (if present) and instead skip all
data from the current position of the file pointer in FromUnit and the end of the file.

Note
If EOF is set, no end-of-file error is issued even if the amount of data skipped does
not match the amount specified by Num. The TRANSFER_COUNT keyword can
be used with EOF to determine how much data was skipped.

LINES

Set this keyword to indicate that the Num argument specifies the number of lines of
text to be skipped. By default, the Num argument specifies the number of bytes of
data to skip.

TRANSFER_COUNT

Set this keyword equal to a named variable that will contain the amount of data
skipped. If LINES is specified, this value is the number of lines of text. Otherwise, it
is the number of bytes. TRANSFER_COUNT is primarily useful in conjunction with
the EOF keyword. If EOF is not specified, TRANSFER_COUNT will be the same as
the value specified for Num.

Examples

Skip the next 8 lines of text from a file:

SKIP_LUN, FromUnit, 8, /LINES

Skip the remainder of the data in a file, and use the TRANSFER_COUNT keyword
to determine how much data was skipped:

SKIP_LUN, FromUnit, /EOF, TRANSFER_COUNT=n

Skip the remainder of the text lines in a file, and use the TRANSFER_COUNT
keyword to determine how many lines were skipped:

SKIP_LUN, FromUnit, /EOF, /LINES, TRANSFER_COUNT=n
What’s New in IDL 5.6 SKIP_LUN

446 Chapter 3: New IDL Routines
Version History

Introduced: 5.6

See Also

CLOSE, COPY_LUN, EOF, FILE_COPY, FILE_LINK, FILE_MOVE, OPEN,
POINT_LUN, PRINT/PRINTF, READ/READF, WRITEU
SKIP_LUN What’s New in IDL 5.6

Chapter 3: New IDL Routines 447
SWAP_ENDIAN_INPLACE

The SWAP_ENDIAN_INPLACE procedure reverses the byte ordering of arbitrary
scalars, arrays or structures. It can make “big endian” number “little endian” and
vice-versa.

Note
The BYTEORDER procedure can be used to reverse the byte ordering of scalars
and arrays (SWAP_ENDIAN_INPLACE also allows structures).

SWAP_ENDIAN_INPLACE differs from the SWAP_ENDIAN function in that it
alters the input data in place rather than making a copy as does SWAP_ENDIAN.
SWAP_ENDIAN_INPLACE can therefore be more efficient, if a copy of the data is
not needed. The pertinent bytes in the input variable are reversed.

This routine is written in the IDL language. Its source code can be found in the file
swap_endian_inplace.pro in the lib subdirectory of the IDL distribution.

Syntax

SWAP_ENDIAN_INPLACE, Variable [, /SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN]

Arguments

Variable

The named variable—scalar, array, or structure—to be swapped.

Keywords

SWAP_IF_BIG_ENDIAN

If this keyword is set, the swap request will only be performed if the platform running
IDL uses “big endian” byte ordering. On little endian machines, the
SWAP_ENDIAN_INPLACE request quietly returns without doing anything. Note
that this keyword does not refer to the byte ordering of the input data, but to the
computer hardware.
What’s New in IDL 5.6 SWAP_ENDIAN_INPLACE

448 Chapter 3: New IDL Routines
SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the swap request will only be performed if the platform running
IDL uses “little endian” byte ordering. On big endian machines, the
SWAP_ENDIAN_INPLACE request quietly returns without doing anything. Note
that this keyword does not refer to the byte ordering of the input data, but to the
computer hardware.

Examples

Reverse the byte order of A:

SWAP_ENDIAN_INPLACE, A

Version History

Introduced: 5.6

See Also

BYTEORDER, SWAP_ENDIAN
SWAP_ENDIAN_INPLACE What’s New in IDL 5.6

Chapter 3: New IDL Routines 449
TRUNCATE_LUN

The TRUNCATE_LUN procedure truncates the contents of a file (which must be
open for write access) at the current position of the file pointer. After this operation,
all data before the current file pointer remains intact, and all data following the file
pointer are gone. The position of the current file pointer is not altered.

Syntax

TRUNCATE_LUN, Unit1, ..., Unitn

Arguments

Unitn

Scalar or array variables containing the logical file unit numbers of the open files to
be truncated.

Keywords

None.

Examples

Example 1

Truncate the entire contents of an existing file:

OPENU, unit, 'baddata.dat', /GET_LUN
TRUNCATE_LUN, unit
FREE_LUN, unit

Example 2

Given an existing file of 10,000 bytes, throw away the final 5,000 bytes, and then
write an additional 2,000 byte array in their place. The resulting file will be 7,000
bytes in length.

OPENU, unit, 'mydata.dat', /GET_LUN
POINT_LUN, unit, 5000
TRUNCATE_LUN, unit
WRITEU, unit, BYTARR(2000)
FREE_LUN, unit
What’s New in IDL 5.6 TRUNCATE_LUN

450 Chapter 3: New IDL Routines
Version History

Introduced: 5.6

See Also

GET_LUN, OPEN, POINT_LUN
TRUNCATE_LUN What’s New in IDL 5.6

Chapter 3: New IDL Routines 451
WIDGET_COMBOBOX

The WIDGET_COMBOBOX function creates combobox widgets, which are similar
to droplist widgets. The main difference between the combobox widget and the
droplist widget is that the combobox widget can be created in such a way that the text
field is editable, allowing the user to enter a value that is not on the list.

A combobox widget displays a text field and an arrow button. If the combobox is not
editable, selecting either the text field or the button reveals a list of options from
which to choose. When the user selects a new option from the list, the list disappears
and the text field displays the currently-selected option. This action generates an
event containing the index of the selected item, which ranges from zero to the number
of elements in the list minus one.

If the combobox is editable, text can be entered in the text box without causing the
list to drop down. This action causes an event in which the index field is set to -1,
allowing you to distinguish this event from list selections.

The text of the current selection is returned in the STR field of the
WIDGET_COMBOBOX event structure. See “Widget Events Returned by
Combobox Widgets” on page 458 for details.

Note
WIDGET_COMBOBOX is not currently available on Compaq True64 UNIX
platforms due to that platform’s lack of support for the necessary Motif libraries.

Syntax

Result = WIDGET_COMBOBOX(Parent [, /DYNAMIC_RESIZE] [, /EDITABLE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=value] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created combobox
widget.
What’s New in IDL 5.6 WIDGET_COMBOBOX

452 Chapter 3: New IDL Routines
Arguments

Parent

The widget ID of the parent widget for the new combobox widget.

Keywords

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed.

Note
This keyword does not take effect when used with the SCR_XSIZE, SCR_YSIZE,
XSIZE, or YSIZE keywords. If one of these keywords is also set, the widget will be
sized as specified by the sizing keyword and will never resize itself dynamically.

EDITABLE

Set this keyword to create an editable combobox. If the combobox is editable, users
can enter or modify in the text field. Changes in the combobox text field will cause
combobox events with the INDEX field of the event structure set to -1. The current
text will be ‘ in the STR field of the event structure.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3938 in the IDL Reference Guide for
WIDGET_COMBOBOX What’s New in IDL 5.6

Chapter 3: New IDL Routines 453
details on specifying names for device fonts. If this keyword is omitted, the default
font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget.

Note
This keyword is only a hint to the toolkit, and may be ignored in some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When a group leader is killed, for any reason, all widgets in the group are
also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string ('').
What’s New in IDL 5.6 WIDGET_COMBOBOX

454 Chapter 3: New IDL Routines
The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique works
well for small data, it can have a significant memory cost when the data being copied
is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_COMBOBOX or the SET_UVALUE keyword to WIDGET_CONTROL),
the variable passed as value becomes undefined. Upon a get operation
(GET_UVALUE keyword to WIDGET_CONTROL), the user value of the widget in
question becomes undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single callback
procedure. This callback procedure can be removed by setting the routine name to the
null string (''). The callback routine is called with the widget ID as its only
argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.
WIDGET_COMBOBOX What’s New in IDL 5.6

Chapter 3: New IDL Routines 455
RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2055 in the IDL Reference Guide for a complete
discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 2061 in the
documentation for WIDGET_BASE in the IDL Reference Guide.
What’s New in IDL 5.6 WIDGET_COMBOBOX

456 Chapter 3: New IDL Routines
UNAME

Set this keyword to a string, which is used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a combobox widget is a scalar
string or array of strings that contains the text of the list items (one list item per array
element). Combobox widgets are sized based on the length (in characters) of the
longest item specified in the array of values for the VALUE keyword.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.
WIDGET_COMBOBOX What’s New in IDL 5.6

Chapter 3: New IDL Routines 457
XSIZE

The desired width of the combobox widget area, in units specified by the UNITS
keyword (pixels are the default). Most widgets attempt to size themselves to fit the
situation. However, if the desired effect is not produced, use this keyword to override
it. This keyword does not control the size of the combobox button or of the dropped
list. Instead, it controls the size around the combobox button and, as such, is not
particularly useful.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

YSIZE

The desired height of the widget, in units specified by the UNITS keyword (pixels are
the default). Most widgets attempt to size themselves to fit the situation. However, if
the desired effect is not produced, use this keyword to override it. This keyword does
not control the size of the combobox button or of the dropped list. Instead, it controls
the size around the combobox button and, as such, is not particularly useful.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of
combobox widgets. In addition to those keywords that affect all widgets, the
following keywords are particularly useful: COMBOBOX_ADDITEM,
COMBOBOX_DELETEITEM, COMBOBOX_INDEX, DYNAMIC_RESIZE,
GET_VALUE, SET_COMBOBOX_SELECT, SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO return information that applies
specifically to combobox widgets. In addition to those keywords that apply to all
widgets, the following keywords are particularly useful: COMBOBOX_GETTEXT,
COMBOBOX_NUMBER, DYNAMIC_RESIZE.
What’s New in IDL 5.6 WIDGET_COMBOBOX

458 Chapter 3: New IDL Routines
Widget Events Returned by Combobox Widgets

Pressing the mouse button while the mouse pointer is over an element of a combobox
widget causes the widget to change the text field on the combobox and to generate an
event. The event structure returned by the WIDGET_EVENT function is defined by
the following statement:

{WIDGET_COMBOBOX, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, STR:""}

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This can be used to index the array of names
originally used to set the widget’s value. If the event was caused by text changes in an
editable combobox, the INDEX field will be set to -1. If you are using an editable
combobox, it is important to check for the value of -1 prior to using the value of the
INDEX field as an index into the array if items. The text of the current selection is
returned in the STR field, which may eliminate the need to use the index field in
many cases.

Note
Platform-specific UI toolkits behave differently if a combobox widget has only a
single element. On some platforms, selecting that element again does not generate
an event. Events are always generated if the list contains multiple items.

Version History

Introduced: 5.6

See Also

CW_PDMENU, WIDGET_BUTTON, WIDGET_DROPLIST, WIDGET_LIST
WIDGET_COMBOBOX What’s New in IDL 5.6

Chapter 3: New IDL Routines 459
WIDGET_TAB

The WIDGET_TAB function is used to create a tab widget. Tab widgets present a
display area on which different pages (base widgets and their children) can be
displayed by selecting the appropriate tab. The titles of the tabs are supplied as the
values of the TITLE keyword for each of the tag widget’s child base widgets.

For a more detailed discussion of the tab widget, along with examples, see “Using
Tab Widgets” in Chapter 26 of the Building IDL Applications manual.

Syntax

Result = WIDGET_TAB(Parent [, /ALIGN_BOTTOM | , /ALIGN_CENTER | ,
/ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string]
[, LOCATION={0 | 1 | 2 | 3}] [, MULTILINE=0 | 1 (Windows) or num tabs per row
(Motif)] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created tab widget.

Arguments

Parent

The widget ID of the parent for the new tab widget.

Note
Only base widgets can be the parent of a tab widget.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.
What’s New in IDL 5.6 WIDGET_TAB

460 Chapter 3: New IDL Routines
ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.
WIDGET_TAB What’s New in IDL 5.6

Chapter 3: New IDL Routines 461
GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When a group leader is killed, for any reason, all widgets in the group are
also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (''). Note that the procedure specified is used only if you are
not using the XMANAGER procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

LOCATION

Set this keyword equal to an integer that specifies which edge of the tab widget will
contain the tabs. The possible values are:

Value Description

0 The tabs are placed along the top of the widget, which is the
default behavior.

1 The tabs are placed along the bottom of the widget.

Table 3-33: LOCATION Keyword Values
What’s New in IDL 5.6 WIDGET_TAB

462 Chapter 3: New IDL Routines
MULTILINE

This keyword controls how tabs appear on the tab widget when all of the tabs do not
fit on the widget in a single row. This keyword behaves differently on Windows and
Motif systems.

Windows

Set this keyword to cause tabs to be organized in a multiline display when the width
of the tabs exceeds the width of the largest child base widget. If possible, IDL will
create tabs that display the full tab text.

If MULTILINE = 0 and LOCATION = 0 or 1, tabs that exceed the width of the
largest child base widget are shown with scroll buttons, allowing the user to scroll
through the tabs while the base widget stays immobile.

If LOCATION = 1 or 2, a multiline display is always used if the tabs exceed the
height of the largest child base widget.

Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. The text of the tabs (the titles of the tab
widget’s child base widgets) may be truncated even if the MULTILINE keyword is
set.

Motif

Set this keyword equal to an integer that specifies the maximum number of tabs to
display per row in the tab widget. If this keyword is not specified (or is explicitly set
equal to zero) all tabs are placed in a single row.

2 The tabs are placed along the left edge of the widget. The text
label for each tab is displayed vertically. On Windows
platforms, setting the keyword to this value implies the
MULTILINE keyword.

3 The tabs are placed along the right edge of the widget. The
text label for each tab is displayed vertically. On Windows
platforms, setting the keyword to this value implies the
MULTILINE keyword.

Value Description

Table 3-33: LOCATION Keyword Values (Continued)
WIDGET_TAB What’s New in IDL 5.6

Chapter 3: New IDL Routines 463
Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. The text of the tabs (the titles of the tab
widget’s child base widgets) is never truncated in order to make the tabs fit the
space available. However, tab text may be truncated if the text of a single tab
exceeds the space available. If MULTILINE is set to any value other than one, some
tabs may not be displayed.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_TAB or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. Upon a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single callback
procedure. This callback procedure can be removed by setting the routine name to the
null string (''). The callback routine is called with the widget ID as its only
argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.
What’s New in IDL 5.6 WIDGET_TAB

464 Chapter 3: New IDL Routines
SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

UNAME

Set this keyword to a string, which is used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.
WIDGET_TAB What’s New in IDL 5.6

Chapter 3: New IDL Routines 465
UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (which is
the default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.
What’s New in IDL 5.6 WIDGET_TAB

466 Chapter 3: New IDL Routines
YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of tab
widgets. In addition to those keywords that affect all widgets, the following keywords
are particularly useful: BASE_SET_TITLE, SET_TAB_CURRENT,
SET_TAB_MULTILINE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO return information that applies specifically to
tab widgets. In addition to those keywords that apply to all widgets, the following
keywords are particularly useful: TAB_CURRENT, TAB_MULTILINE,
TAB_NUMBER.

Widget Events Returned by Tab Widgets

Tab widgets generate events when a new tab is selected. The event structure returned
by the WIDGET_EVENT function is defined by the following statement:

{WIDGET_TAB, ID:0L, TOP:0L, HANDLER:0L, TAB:0L}

ID is the widget ID of the button generating the event. TOP is the widget ID of the
top level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. TAB returns the zero-based index of the tab
selected.

Version History

Introduced: 5.6

See Also

“Using Tab Widgets” in Chapter 26 of the Building IDL Applications manual
WIDGET_TAB What’s New in IDL 5.6

Chapter 3: New IDL Routines 467
WIDGET_TREE

The WIDGET_TREE function is used to create and populate a tree widget. The tree
widget presents a hierarchical view that can be used to organize a wide variety of data
structures and information.

The WIDGET_TREE function performs two separate tasks: creating the tree widget
and populating the tree widget with nodes (branches and leaves).

For a more detailed discussion of the tree widget, along with examples, see “Using
Tree Widgets” in Chapter 26 of the Building IDL Applications manual.

Syntax

Result = WIDGET_TREE(Parent [, /ALIGN_BOTTOM | , /ALIGN_CENTER |
, /ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP] [, BITMAP=array]
[, /CONTEXT_EVENTS] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[, /EXPANDED] [, /FOLDER] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /MULTIPLE]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE] [, /TOP]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=string]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created tree widget.

Arguments

Parent

The widget ID of the parent for the new tree widget. Parent can be either a base
widget or a tree widget.

• If Parent is a base widget, WIDGET_TREE will create a tree widget that
contains no other tree widgets. This type of tree widget is referred to as a root
node.

• If Parent is a tree widget, WIDGET_TREE will create a new tree widget
(called a node) in the specified tree widget.
What’s New in IDL 5.6 WIDGET_TREE

468 Chapter 3: New IDL Routines
Note
With the exception of the first tree widget created (the root node, whose
Parent is a base widget), a tree widget (or node) must be created with the
FOLDER keyword in order to serve as the Parent for other tree widgets.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

BITMAP

Set this keyword equal to a 16x16x3 array representing an RGB image that will be
displayed next to the node in the tree widget.

CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-
WIDGET_TREE What’s New in IDL 5.6

Chapter 3: New IDL Routines 469
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAYCONTEXTMENU within your widget program’s event
handler to display the context menu.

For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 26 of the Building IDL Applications manual.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EXPANDED

If the tree node being created is a folder (specified by the FOLDER keyword), set this
keyword to cause the folder to be initially displayed expanded, showing all of its
immediate child entries. By default, folders are initially displayed collapsed.

This keyword is only valid if the Parent of the tree widget is another tree widget.

FOLDER

Set this keyword to cause the tree node being created to act as a folder (that is, as a
branch of the tree rather than a leaf).

Note
With the exception of the root node (the tree widget whose Parent widget is a base
widget), only tree nodes that have the FOLDER keyword set can act as the parent
for other tree widgets.

This keyword is only valid if the Parent of the tree widget is another tree widget.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.
What’s New in IDL 5.6 WIDGET_TREE

470 Chapter 3: New IDL Routines
GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When a group leader is killed, for any reason, all widgets in the group are
also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (''). Note that the procedure specified is used only if you are
not using the XMANAGER procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MULTIPLE

Set this keyword to enable multiple selection operations in the tree widget. If
enabled, multiple elements in the tree widget can be selected at one time by holding
down the Control or Shift key while clicking the left mouse button.

This keyword is only valid if the Parent of the tree widget is a base widget.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique works
well for small data, it can have a significant memory cost when the data being copied
is large.
WIDGET_TREE What’s New in IDL 5.6

Chapter 3: New IDL Routines 471
If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_TAB or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. Upon a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (''). The callback routine is called with the widget ID as its
only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.
What’s New in IDL 5.6 WIDGET_TREE

472 Chapter 3: New IDL Routines
SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

TOP

Set this keyword to cause the tree node being created to be inserted as the parent
node’s top entry. By default, new nodes are inserted as the parent node’s bottom
entry.

This keyword is only valid if the Parent of the tree widget is another tree widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (which is
the default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.
WIDGET_TREE What’s New in IDL 5.6

Chapter 3: New IDL Routines 473
UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

Set this keyword equal to a string containing the text that will be displayed next to the
tree node. If this keyword is not set, the default value Tree is used.

This keyword is only valid if the Parent of the tree widget is another tree widget.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.
What’s New in IDL 5.6 WIDGET_TREE

474 Chapter 3: New IDL Routines
YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of tree
widgets. In addition to those keywords that affect all widgets, the following keywords
are particularly useful: SET_TREE_BITMAP, SET_TREE_EXPANDED,
SET_TREE_SELECT, SET_TREE_VISIBLE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO return information that applies specifically to
tree widgets. In addition to those keywords that apply to all widgets, the following
keywords are particularly useful: TREE_EXPANDED, TREE_SELECT, and
TREE_ROOT.

Widget Events Returned by Tree Widgets

Several variations of the tree widget event structure depend upon the specific event
being reported. All of these structures contain the standard three fields (ID, TOP, and
HANDLER) as well as an integer TYPE field that indicates which type of structure
has been returned. Programs should always check the type field before referencing
fields that are not present in all tree event structures. The different tree widget event
structures are described below.

Select (TYPE = 0)

This structure is returned when the currently selected node in the tree widget
changes:

{WIDGET_TREE_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, CLICKS:0L}

The CLICKS field indicates the number of mouse-button clicks that occurred when
the event took place. This field contains 1 (one) when the item is selected, or 2 when
the user double-clicks on the item.
WIDGET_TREE What’s New in IDL 5.6

Chapter 3: New IDL Routines 475
Expand (TYPE = 1)

This structure is returned when a folder in the tree widget expands or collapses:

{WIDGET_TREE_EXPAND, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, EXPAND:0L}

The EXPAND field contains 1 (one) if the folder expanded or 0 (zero) if the folder
collapsed.

Context Menu Events

Tree widgets return the following event structure when the user clicks the right
mouse button and the tree widget was created with the CONTEXT_EVENTS
keyword set:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, and are measured from
the upper left corner of the tree widget.

Version History

Introduced: 5.6

See Also

“Using Tree Widgets” in Chapter 26 of the Building IDL Applications manual
What’s New in IDL 5.6 WIDGET_TREE

476 Chapter 3: New IDL Routines
WIDGET_TREE What’s New in IDL 5.6

Chapter 4:

Using the XML Parser
Object Class
The following topics are covered in this chapter:
About XML . 478
Using the XML Parser 480

Example: Reading Data Into an Array . . . 485

Example: Reading Data Into Structures . . 492
Building Complex Data Structures 499
What’s New in IDL 5.6 477

478 Chapter 4: Using the XML Parser Object Class
About XML

XML (eXtensible Markup Language) provides a set of rules for defining semantic
tags that can describe virtually any type of data in a simple ASCII text file. Data
stored in XML-format files is both human- and machine-readable, and is often
relatively easy to interpret either visually or programmatically. The structure of data
stored in an XML file is described by either a Document Type Definition (DTD) or an
XML schema, which can either be included in the file itself or referenced from an
external network location.

It is beyond the scope of this manual to describe XML in detail. Numerous third-
party books and electronic resources are available. The following texts may be
useful:

• http://www.w3.org — information about many web standards, including
XML related technologies.

• http://www.w3schools.com — tutorials on all manner of XML-related
topics.

• http://www.saxproject.org — information about the Simple API for
XML, the event-based XML parsing technology used by IDL.

• Brownell, David. SAX2. O'Reilly & Associates, 2002. ISBN: 0-596-00237-8.

• Harold, Eliotte Rusty. XML Bible. IDG Books Worldwide, 1999. ISBN:
0-7645-3236-7

About XML Parsers

There are two basic types of parsers for XML data:

• tree-based parsers

• event-based parsers.

Tree-based Parsers

Tree-based parsers map an XML document into a tree structure in memory, allowing
you to select elements by navigating through the tree. This type of parser is generally
based on the Document Object Model (DOM) and the tree is often referred to as a
DOM tree.

Tree-based parsers are especially useful when the XML data file being parsed is
relatively small. Having access to the entire data set at one time can be convenient
and makes processing data based on multiple data values stored in the tree easy.
About XML What’s New in IDL 5.6

http://www.w3.org
http://www.w3schools.com
http://www.saxproject.org

Chapter 4: Using the XML Parser Object Class 479
However, if the tree structure is larger than will fit in physical memory or if the data
must be converted into a new (local) data structure before use, then tree-based parsers
can be slow and cumbersome.

Event-based Parsers

Event-based parsers read the XML document sequentially and report parsing events
(such as the start or end of an element) as they occur, without building an internal
representation of the data structure. The most common examples of event-based
XML parsers use the Simple API for XML (SAX), and are often referred to as a SAX
parsers.

Event-based parsers allow the programmer to write callback routines that perform an
appropriate action in response to an event reported by the parser. Using an event-
based parser, you can parse very large data files and create application-specific data
structures. The IDLffXMLSAX object class implements an event-based parser based
on the SAX version 2 API.
What’s New in IDL 5.6 About XML

480 Chapter 4: Using the XML Parser Object Class
Using the XML Parser

IDL’s XML parser object class (IDLffXMLSAX) implements a SAX 2 event-based
parser. The object’s methods are a set of callback routines that are called
automatically when the parser encounters different constituents of an XML
document. For example, when the parser encounters the beginning of an XML
element, it calls the StartElement method. When the StartElement method
returns, the parser continues.

The IDLffXMLSAX object’s methods are completely generic. As provided, they do
nothing with the items encountered in the XML file. To use the parser object to read
data from an XML file, you must write a subclass of the IDLffXMLSAX class,
overriding the superclass’s methods to accomplish your objectives. This requirement
that you subclass the object makes the IDLffXMLSAX class unlike any other object
class supplied by IDL.

For a detailed discussion of IDL object classes, subclassing, and method overriding,
see Chapter 21, “Object Basics” in Building IDL Applications. For a description of
the parser object class and its methods, see “IDLffXMLSAX object” on page 146.

Subclassing the IDLffXMLSAX Object Class

Writing a subclass of the IDLffXMLSAX object class is similar to writing a subclass
of any of IDL’s other object classes. The basic steps are:

1. Define a class structure for your subclass, inheriting from the IDLffXMLSAX
object class.

2. Write methods to override the IDLffXMLSAX object class methods as
necessary.

3. Write additional methods required for your application.

4. Create a class definition routine for your XML parser object.

Let’s look at these steps individually:

Define a Class Structure

Every object class has a unique class structure that defines the instance data
contained in the object. (See “Class Structures” on page 491 in Building IDL
Applications for details.) When writing your own parser object (a subclass of the
IDLffXMLSAX object), you must first determine what instance data you need your
parser object to contain, and define a class structure accordingly.
Using the XML Parser What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 481
Note
Your parser object’s class structure must inherit from the IDLffXMLSAX class
structure. See “Inheritance” on page 493 in Building IDL Applications for details.

For example, suppose you want to use your parser to extract an array of data from an
XML file. You might choose to define your class structure to include an IDL pointer
that will contain the data array. For this case, your class structure definition might
look something like

void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW()}

Within your subclass’s methods, this data structure will always be available via the
implicit self argument (see “Method Routines” on page 506 in Building IDL
Applications for details). Setting the value of self.ptr within a method routine sets
the instance data of the object.

In most cases, your class structure definition will be included in a routine that does
Automatic Structure Definition (see “Automatic Class Structure Definition” on
page 492 in Building IDL Applications).

Override Superclass Methods

For your XML parser to do any work, you must override the generic methods of the
IDLffXMLSAX object class. Overriding a method is as simple as defining a method
routine with the same name as the superclass’s method. When your parser encounters
an item in the parsed XML file that triggers one of the IDLffXMLSAX methods, it
will look first for a method of the same name in the definition of your subclass of the
IDLffXMLSAX object class. See “Method Overriding” on page 510 in Building IDL
Applications for details.

For example, suppose you want your parser to print out the element name of each
XML element it encounters to IDL’s output. You could override the StartElement
method of the IDLffXMLSAX class as follows:

PRO myParser::StartElement, URI, Local, Name

PRINT, Name

END

Note
The new method must take the same parameters as the overridden method.
What’s New in IDL 5.6 Using the XML Parser

482 Chapter 4: Using the XML Parser Object Class
When your parser encounters the beginning of an XML element, it will look for a
method named StartElement and call that method with the parameters specified
for the IDLffXMLSAX::StartElement method. Since your subclass’s StartElement
method is found before the superclass’s StartElement method, your method is used.

Note
You do not necessarily need to override all of the IDLffXMLSAX object methods.
Depending on your application, it may be sufficient to override four or five of the
superclass’s methods. See the parser definitions later in this chapter for examples.

Overriding the IDLffXMLSAX methods is the heart of writing your own XML
parser. To write an efficient parser, you will need detailed knowledge of the structure
of the XML file you want to parse.

See “Example: Reading Data Into an Array” on page 485 and “Example: Reading
Data Into Structures” on page 492 for examples of how to work with parsed XML
data and return the data in IDL variables.

Write Additional Methods

Depending on your application, you may need to write additional object methods to
work with the instance data retrieved from the parsed XML file. Like the overridden
object methods, any new methods you write have access to the object’s instance data
via the implicit self parameter.

Create a Class Definition Routine

If you combine your class definition routine with your class’s method routines in a
file, you can use IDL’s Automatic Structure Definition feature to automatically
compile the class routines when an instance of your class is created via the
OBJ_NEW function. Keep the following in mind when creating the .pro file that
will contain the definition of your class structure and method routines:

• The routine that creates your class structure should be named with the
characters “__define” appended to the end of the class name. For example, if
your parser object class is named “myParser” and its class structure is the one
described in “Define a Class Structure” on page 480, the routine definition
would be:

PRO myParser__define

void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW()}

END
Using the XML Parser What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 483
• The .pro file should be named after the class structure definition routine. In
this case, the name would be myParser__define.pro.

• The class structure definition routine should be the last routine in the .pro
file.

Using Your Parser

Once you have written the class definition routine for your parser, you are ready to
parse an XML file. The process is straightforward:

1. Create an instance of your parser object.

2. Call the ParseFile method on your object instance with the name of an XML
file as the parameter.

For example, if your parser object is named myParser and the object class definition
file is named myParser__define.pro, you could use the following IDL
statements:

xmlFile = OBJ_NEW('myParser')
xmlFile -> ParseFile, 'data.xml'

The first statement creates a new XML parser based on your class definition and
places a reference to the parser object in the variable xmlFile. The second statement
calls the ParseFile method on that object with the filename data.xml.

What happens next depends on your application. If your object definition stores
values from the parsed file in the object’s instance data, you will need some way to
retrieve the values into IDL variables that are accessible outside the object. See
“Example: Reading Data Into an Array” on page 485 and “Example: Reading Data
Into Structures” on page 492 for examples that return data variables that are
accessible to other routines.

Validation

An XML document is said to be valid if it adheres to a set of constraints set forth in
either a Document Type Definition (DTD) or an XML schema. Both DTDs and
schemas define which elements can be included in an XML file and what values
those elements can assume. XML schemas are a newer technology that is designed to
replace and be more robust than DTDs. In working with existing XML files, you are
likely to encounter both types of validation mechanisms.
What’s New in IDL 5.6 Using the XML Parser

484 Chapter 4: Using the XML Parser Object Class
Ensuring that a file contains valid XML helps in writing an efficient parsing
mechanism. For example, if your validation method specifies that element B can only
occur inside element A, and the XML document you are parsing is known to be valid,
then your parser can assume that if it encounters element B it is inside element A.

The IDLffXMLSAX parser object can check an XML document using either
validation mechanism, depending on whether a DTD or a schema definition is
present. By default, if either is present, the parser will attempt to validate the XML
document. See SCHEMA_CHECKING (Get, Set) and VALIDATION_MODE (Get,
Set) under “IDLffXMLSAX::Init” on page 167 for details.
Using the XML Parser What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 485
Example: Reading Data Into an Array

This example subclasses the IDLffXMLSAX parser object class to create an object
class named xml_to_array. The xml_to_array object class is designed to read
numerical values from an XML file with the following structure:

<array>
<number>0</number>
<number>1</number>
...

</array>

and place those values into an IDL array variable.

Note
This example is a very simple example. It is designed to illustrate how an event-
based XML parser is constructed using the IDLffXMLSAX object class. An
application that reads real data from an XML file will most likely be quite a bit
more complicated.

Creating the xml_to_array Object Class

In order to read the XML file and return an array variable, we will need to create an
object class definition that inherits from the IDLffXMLSAX object class, and
override the following superclass methods: Init, Cleanup, StartDocument,
Characters, StartElement, and EndElement. Since this example does not
retrieve data using any of the other IDLffXMLSAX methods, we do not need to
override those methods. In addition, we will create a new method that allows us to
retrieve the array data from the object instance data.

Note
This example is included in the file xml_to_array__define.pro in the
examples/data_access subdirectory of the IDL distribution.
What’s New in IDL 5.6 Example: Reading Data Into an Array

486 Chapter 4: Using the XML Parser Object Class
Object Class Definition

The following routine is the definition of the xml_to_array object class:

PRO xml_to_array__define

void = {xml_to_array, $
INHERITS IDLffXMLSAX, $
charBuffer:'', $
pArray:PTR_NEW()}

END

The following items should be considered when defining this class structure:

• The structure definition uses the INHERITS keyword to inherit the object class
structure and methods of the IDLffXMLSAX object.

• The charBuffer structure field is set equal to an empty string.

• The pArray structure field is set equal to an IDL pointer. We will use this
pointer to store the numerical array data we retrieve.

• The routine name is created by adding the string “__define” (note the two
underscore characters) to the class name.

Why do we store the array data in a pointer variable? Because the fields of a named
structure (xml_to_array, in this case) must always contain the same type of data as
when that structure was defined. Since we want to be able to add values to the data
array as we parse the XML file, we will need to extend the array with each new value.
If we began by defining the size of the array in the structure variable, we would not
be able to extend the array. By holding the data array in a pointer, we can extend the
array without changing the format of the xml_to_array object class structure.

Note
Although we describe this routine first here, the xml_to_array__define routine
must be the last routine in the xml_to_array__define.pro file.

Init Method

The Init method is called when the an xml_to_array parser object is created by a
call to OBJ_NEW. The following routine is the definition of the Init method:

FUNCTION xml_to_array::Init
self.pArray = PTR_NEW(/ALLOCATE_HEAP)
RETURN, self -> IDLffxmlsax::Init()

END
Example: Reading Data Into an Array What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 487
We do two things in this method:

• We initialize the pointer in the pArray field of the class structure variable.

Note
Within a method, we can refer to the class structure variable with the implicit
parameter self. Remember that self is actually a reference to the
xml_to_array object instance.

• The return value from this function is the return value of the superclass’s Init
method, called on the self object reference.

Note
The initialization task (setting the value of the pArray field) is performed before
calling the superclass’s Init method.

See “IDLffXMLSAX::Init” on page 167 for details on the method we are overriding.

Cleanup Method

The Cleanup method is called when the xml_to_array parser object is destroyed
by a call to OBJ_DESTROY. The following routine is the definition of the Cleanup
method:

PRO xml_to_array::Cleanup

IF (PTR_VALID(self.pArray)) THEN PTR_FREE, self.pArray

END

All we do in the Cleanup method is to release the pArray pointer, if it exists.

See “IDLffXMLSAX::Cleanup” on page 152 for details on the method we are
overriding.

Characters Method

The Characters method is called when the xml_to_array parser encounters
character data inside an element. The following routine is the definition of the
Characters method:

PRO xml_to_array::characters, data

self.charBuffer = self.charBuffer + data

END
What’s New in IDL 5.6 Example: Reading Data Into an Array

488 Chapter 4: Using the XML Parser Object Class
As it parses the character data in an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See “IDLffXMLSAX::Characters” on page 151 for details on the method we are
overriding.

StartDocument Method

The StartDocument method is called when the xml_to_array parser encounters
the beginning of the XML document. The following routine is the definition of the
StartDocument method:

PRO xml_to_array::StartDocument

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
void = TEMPORARY(*self.pArray)

END

Here, we check to see if the array pointed at by the pArray pointer contains any data.
Since we are just beginning to parse the XML document at this point, it should not
contain any data. If data is present, we reinitialize the array using the TEMPORARY
function.

Note
Since pArray is a pointer, we must use dereferencing syntax to refer to the array.

See “IDLffXMLSAX::StartDocument” on page 176 for details on the method we are
overriding.

StartElement Method

The StartElement method is called when the xml_to_array parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_array::startElement, URI, local, strName, attr, value

CASE strName OF
"array": BEGIN

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
void = TEMPORARY(*self.pArray);; clear out memory

END
"number" : BEGIN

self.charBuffer = ''
END
Example: Reading Data Into an Array What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 489
ENDCASE

END

Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

• If the element is an <array> element, we check to see if the array pointed at
by the pArray pointer is empty. Since we are just beginning to read the array
data at this point, there should be no data. If data already exists, we reinitialize
the array using the TEMPORARY function.

• If the element is a <number> element, we reinitialize the charBuffer field.
Since we are just beginning to read the number data, nothing should be in the
buffer.

See “IDLffXMLSAX::StartElement” on page 178 for details on the method we are
overriding.

EndElement Method

The EndElement method is called when the xml_to_array parser encounters the
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_array::EndElement, URI, Local, strName

CASE strName OF
"array":
"number": BEGIN

idata = FIX(self.charBuffer);
IF (N_ELEMENTS(*self.pArray) EQ 0) THEN $

*self.pArray = iData $
ELSE $

*self.pArray = [*self.pArray,iData]
END

ENDCASE

END

As with the StartElement method, we first check the name of the element we have
encountered, and use a CASE statement to branch based on the element name:

• If the element is an <array> element, we do nothing.

• If the element is a <number> element, we must get the data stored in the
charBuffer field of the instance data structure and place it in the array:

• First, we convert the string data in the charBuffer into an IDL integer.
What’s New in IDL 5.6 Example: Reading Data Into an Array

490 Chapter 4: Using the XML Parser Object Class
• Next, we check to see if the array pointed at by pArray is empty. If it is
empty, we simply set the array equal to the data value we retrieved from
the charBuffer.

• If the array pointed at by pArray is not empty, we redefine the array to
include the new data retrieved from the charBuffer.

See “IDLffXMLSAX::EndElement” on page 158 for details on the method we are
overriding.

Note
In both the StartElement and EndElement methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML file’s DTD or schema (in this case, the only elements are
<array> and <number>). We do not need an ELSE clause in the CASE statement.
If an unknown element is found in the XML file, the parser will report a validation
error.

GetArray Method

The GetArray method allows us to retrieve the array data stored in the pArray
pointer variable. The following routine is the definition of the GetArray method:

FUNCTION xml_to_array::GetArray

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
RETURN, *self.pArray $

ELSE RETURN , -1

END

Here, we check to see whether the array pointed at by pArray contains any data. If it
does contain data, we return the array. If the array contains no data, we return the
value -1.

Using the xml_to_array Parser

To see the xml_to_array parser in action, you can parse the file num_array.xml,
found in the examples/data subdirectory of the IDL distribution. This
num_array.xml file contains the fragment of XML like the one shown in the
beginning of this section, and includes 20 extra <number> elements. The
num_array.xml file also includes a DTD describing the structure of the file.
Example: Reading Data Into an Array What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 491
Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_array')
xmlFile = FILEPATH('num_array.xml', $

SUBDIRECTORY = ['examples', 'data'])
xmlObj -> ParseFile, xmlFile
myArray = xmlObj -> GetArray()
OBJ_DESTROY, xmlObj
HELP, myArray
PRINT, myArray

IDL prints:

MYARRAY INT = Array[20]
0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19
What’s New in IDL 5.6 Example: Reading Data Into an Array

492 Chapter 4: Using the XML Parser Object Class
Example: Reading Data Into Structures

This example subclasses the IDLffXMLSAX parser object class to create an object
class named xml_to_struct. The xml_to_struct object class is designed to read
data from an XML file with the following structure:

<Solar_System>
<Planet NAME='Mercury'>

<Orbit UNITS='kilometers' TYPE='ulong64'>579100000</Orbit>
<Period UNITS='days' TYPE='float'>87.97</Period>
<Satellites TYPE='int'>0</Satellites>

</Planet>
...

</Solar_System>

and place those values into an IDL array containing one structure variable for each
<Planet> element. We use a structure variable for each <Planet> element so we
can capture data of several data types in a single place.

Note
While this example is more complicated than the previous example, it is still rather
simple. It is designed to illustrate a method whereby more complex XML data
structures can be represented in IDL.

Creating the xml_to_struct Object Class

To read the XML file and return a structure variable, we will need to create an object
class definition that inherits from the IDLffXMLSAX object class, and override the
following superclass methods: Init, Characters, StartElement, and
EndElement. Since this example does not retrieve data using any of the other
IDLffXMLSAX methods, we do not need to override those methods. In addition, we
will create a new method that allows us to retrieve the structure data from the object
instance data.

Notice that the elements of the XML data file include attributes. While we will
retrieve and use some of the attribute data from the file, we will ignore some of it.

Note
When parsing an XML data file, you can pick and choose the data you wish to pull
into IDL. This ability to selectively retrieve data from the XML file is one of the
great advantages of an event-based parser over a tree-based parser.
Example: Reading Data Into Structures What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 493
Note
This example is included in the file xml_to_struct__define.pro in the
examples/data_access subdirectory of the IDL distribution.

Object Class Definition

The following routine is the definition of the xml_to_struct object class:

PRO xml_to_struct__define

void = {PLANET, NAME: "", Orbit: 0ull, period:0.0, Moons:0}
void = {xml_to_struct, $

INHERITS IDLffXMLSAX, $
CharBuffer:"", $
planetNum:0, $
currentPlanet:{PLANET}, $
Planets : MAKE_ARRAY(9, VALUE = {PLANET})}

END

The following items should be considered when defining this class structure:

• Before creating the object class structure, we define a structure named
PLANET. We will use the PLANET structure to store data from the <Planet>
elements of the XML file.

• The object class structure definition uses the INHERITS keyword to inherit the
object class structure and methods of the IDLffXMLSAX object.

• The charBuffer structure field is set equal to a string value. We will use this
field to accumulate character data stored in XML elements.

• The planetNum structure field is set equal to an integer value. We will use this
field to keep track of which array element we are currently populating.

• The currentPlanet structure field is set equal to a PLANET structure.

• The Planets structure field is set equal to a nine-element array of PLANET
structures.

• The routine name is created by adding the string “__define” (note the two
underscore characters) to the class name.
What’s New in IDL 5.6 Example: Reading Data Into Structures

494 Chapter 4: Using the XML Parser Object Class
We have explicitly defined our Planets structure field as a nine-element array of
PLANET structures, which we can do because we know exactly how many
<Planet> elements will be read from our XML file. Specifying the exact size of the
data array in the class structure definition is very efficient (since we create the array
only once) and eliminates the need to free the pointer in the Cleanup method.
However, it has the following consequences:

• We must explicitly keep track of the index of the array element we are
populating, and increment it after we have finished with a given element (see
the EndElement method below).

• We must know in advance how many elements the array will hold. If the size
of the final array is unknown, it is more efficient to use a pointer to an array, as
we did in the previous example, and allow the array to grow as elements are
added. See “Building Complex Data Structures” on page 499 for additional
discussion of ways to configure the instance data structure.

Note
Although we describe this routine here first, the xml_to_struct__define
routine must be the last routine in the xml_to_struct__define.pro file.

Init Method

The Init method is called when the an xml_to_struct parser object is created by
a call to OBJ_NEW. The following routine is the definition of the Init method:

FUNCTION xml_to_struct::Init

self.planetNum = 0
RETURN, self -> IDLffXMLSAX::Init()

END

We do two things in this method:

• We initialize the planetNum field with the value of zero. We will increment
this value as we populate the Planets array.

Note
Within a method, we can refer to the class structure variable with the implicit
parameter self. Remember self is actually a reference to the
xml_to_struct object instance.

• The return value from this function is the return value of the superclass’s Init
method, called on the self object reference.
Example: Reading Data Into Structures What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 495
Note
We perform our own initialization task (setting the value of the planetNum field)
before calling the superclass’s Init method.

See “IDLffXMLSAX::Init” on page 167 for details on the method we are overriding.

Characters Method

The Characters method is called when the xml_to_struct parser encounters
character data inside an element. The following routine is the definition of the
Characters method:

PRO xml_to_struct::characters, data

self.charBuffer = self.charBuffer + data

END

As it parses the character data in an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See “IDLffXMLSAX::Characters” on page 151 for details on the method we are
overriding.

StartElement Method

The StartElement method is called when the xml_to_struct parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_struct::startElement, URI, local, strName, attrName, attrValue

CASE strName OF
"Solar_System": ; Do nothing
"Planet" : BEGIN

self.currentPlanet = {PLANET, "", 0ull, 0.0, 0}
self.currentPlanet.Name = attrValue[0]

END
"Orbit" : self.charBuffer = ''
"Period" : self.charBuffer = ''
"Moons" : self.charBuffer = ''

ENDCASE

END
What’s New in IDL 5.6 Example: Reading Data Into Structures

496 Chapter 4: Using the XML Parser Object Class
Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

• If the element is a <Solar_System> element, we do nothing.

• If the element is a <Planet> element, we do the following things:

• Set the value of the currentPlanet field of the self instance data
structure equal to a PLANET structure, setting the values of the structure
fields to zero values.

• Set the value of the Name field of the PLANET structure held in the
currentPlanet field equal to the value of the Name attribute of the
element. This field contains the name of the planet whose data we are
reading.

• If the element is an <Orbit>, <Period>, or <Moons> element, we reinitialize
the value of the charBuffer field of the self instance data structure.

See “IDLffXMLSAX::StartElement” on page 178 for details on the method we are
overriding.

EndElement Method

The EndElement method is called when the xml_to_struct parser encounters the
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_struct::EndElement, URI, Local, strName

CASE strName of
"Solar_System":
"Planet": BEGIN

self.Planets[self.planetNum] = self.currentPlanet
self.planetNum = self.planetNum + 1

END
"Orbit" : self.currentPlanet.Orbit = self.charBuffer
"Period" : self.currentPlanet.Period = self.charBuffer
"Moons" : self.currentPlanet.Moons= self.charBuffer

ENDCASE

END
Example: Reading Data Into Structures What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 497
As with the StartElement method, we first check the name of the element we have
encountered, and use a CASE statement to branch based on the element name:

• If the element is a <Solar_System> element, we do nothing.

• If the element is a <Planet> element, we set the element of the Planets
array specified by planetNum equal to the PLANET structure contained in
currentPlanet. Then, we increment the planetNum counter.

• If the element is an <Orbit>, <Period>, or <Satellites> element, we
place the value in the charBuffer field into the appropriate field within the
PLANET structure contained in currentPlanet.

See “IDLffXMLSAX::EndElement” on page 158 for details on the method we are
overriding.

Note
In both the StartElement and EndElement methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML file’s DTD or schema. We do not need an ELSE clause in the
CASE statement. If an unknown element is found in the XML file, the parser will
report a validation error.

GetArray Method

The GetArray method allows us to retrieve the array of structures stored in the
Planets variable. The following routine is the definition of the GetArray method:

FUNCTION xml_to_struct::GetArray

IF (self.planetNum EQ 0) THEN $
RETURN, -1 $

ELSE RETURN, self.Planets[0:self.planetNum-1]

END

Here, we check to see whether the planetNum counter has been incremented. If it
has been incremented, we return as the number of array elements specified by the
counter. If the counter has not been incremented (indicating that no data has been
stored in the array), we return the value -1.
What’s New in IDL 5.6 Example: Reading Data Into Structures

498 Chapter 4: Using the XML Parser Object Class
Using the xml_to_struct Parser

To see the xml_to_struct parser in action, you can parse the file planets.xml,
found in the examples/data subdirectory of the IDL distribution. The
planets.xml file contains the fragment of XML like the one shown at the
beginning of this section, and includes a <Planet> element for each planet in the
solar system. The planets.xml file also includes a DTD describing the structure of
the file.

Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_struct')
xmlFile = FILEPATH('planets.xml', $

SUBDIRECTORY = ['examples', 'data'])
xmlObj -> ParseFile, xmlFile
planets = xmlObj -> GetArray()
OBJ_DESTROY, xmlObj

The variable planets now holds an array of PLANET structures, one for each
planet. To print the number of moons for each planet, you could use the following
IDL statement:

FOR i = 0, (N_ELEMENTS(planets.Name) - 1) DO $
PRINT, planets[i].Name, planets[i].Moons, $
FORMAT = '(A7, " has ", I2, " moons")'

IDL prints:

Mercury has 0 moons
Venus has 0 moons
Earth has 1 moons
Mars has 2 moons
Jupiter has 16 moons
Saturn has 18 moons
Uranus has 21 moons
Neptune has 8 moons
Pluto has 1 moons

To view all the information about the planet Mars, you could use the following IDL
statement:

HELP, planets[3], /STRUCTURE

IDL prints:

** Structure PLANET, 4 tags, length=32, data length=26:
NAME STRING 'Mars'
ORBIT ULONG64 227940000
PERIOD FLOAT 686.980
MOONS INT 2
Example: Reading Data Into Structures What’s New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 499
Building Complex Data Structures

Few limitations exist regarding the complexity of the data structures that can be
represented in an XML data file. Writing a parser to read data from such complex
structures into IDL can be a challenge. If you are designing a parser to read a very
complex or deeply nested XML file, keep the following concepts in mind.

Use Dynamically Sized Arrays if Necessary

If you don’t know the final size of your data array, or if the size of the array will
change, store the data array in an IDL pointer in the instance data structure. This
technique allows you to change the size of the data array without changing the
definition of the instance data structure. The downside of extending the data array in
this manner is performance. Each time the array is extended, IDL must hold two
copies of the entire array in memory. If the array becomes large, this duplication can
cause performance problems.

In “Example: Reading Data Into an Array” on page 485, we extended our data array
as we added each element despite the fact that we knew the number of data elements.
We used a pointer to illustrate the technique, and to make it clear that if you use
pointers to store your instance data, you must free the pointers in your subclass’s
Cleanup method.

Use Fixed-Size Arrays When Possible

If you will be building a large data array, and you know in advance how many
elements it will contain, create the array when defining the class data structure and
use array indexing to place data in the appropriate elements. Using a fixed-size array
eliminates the need to copy the full array each time it is extended, and can lead to
noticeable performance improvements when large arrays are involved.

In “Example: Reading Data Into Structures” on page 492, we illustrated the
technique of using a pre-defined array to store our instance data.

Using Nested Structures

If your data structure is complex, you may be inclined to represent your data as a set
of nested IDL structure variables. While nesting structure variables can help you
create a data structure that emulates the structure of your XML file, deeply nested
structures can make your code more difficult to create and maintain. Consider storing
data in several arrays of structures rather than a single, deeply-nested structure.

If you have a good reason to create nested structures, and also need to extend them
dynamically, you should use the CREATE_STRUCT function.
What’s New in IDL 5.6 Building Complex Data Structures

500 Chapter 4: Using the XML Parser Object Class
The same caveats apply to extending a structure with CREATE_STRUCT as apply to
extending an array. With large datasets, the process of duplicating the structures may
cause performance problems.
Building Complex Data Structures What’s New in IDL 5.6

Index

Numerics
64-bit IDL, support for, 31

A
array operators

LA_CHOLDC, 314
LA_CHOLMPROVE, 317
LA_CHOLSOL, 320
LA_DETERM, 323
LA_EIGENPROBLEM, 325
LA_EIGENVEC, 337
LA_ELMHES, 341
LA_HQR, 347
LA_INVERT, 350
LA_LUDC, 362
LA_LUMPROVE, 365

LA_LUSOL, 368
LA_SVD, 371
LA_TRIDC, 375
LA_TRIQL, 383
LA_TRIRED, 386
LA_TRISOL, 388

arrays
median value, 25
product of elements, 23
subscripts

defining subscript ranges, 26
out-of-range errors, 30

B
byte order

reversing, 447
What’s New in IDL 5.6 501

502
C
Cartesian

converting from lat/lon, 391
converting to lat/lon, 412

Cholesky decomposition
constructing (LA_CHOLDC), 314
constructing (LA_CHOLMPROVE), 317
constructing (LA_CHOLSOL), 320

clipping planes
maximum number, 15
support for, 15

COM
argument skipping support, 43
data type support, 44
default value support, 43
function return value support, 43
optional argument support, 43
using COM objects in IDL, 58
using IDLcomIDispatch object, 43

combobox widgets, 451
comments

commenting blocks of code, 39
compute

eigenvalues, 325
constructing

diagonal matrices, 193
COPY_LUN procedure, 190
copying

data between files, 190
files, 196
multiple code lines, 38

creating
symbolic links, 203

cursor
creating custom, 18
registering, 419

D
debugging

shared memory, 421
decomposition

Cholesky (LA_CHOLDC), 314
Cholesky (LA_CHOLMPROVE), 317
Cholesky (LA_CHOLSOL), 320
LU

LA_LUDC procedure, 362
LA_LUSOL function, 368
LA_TRIDC function, 375

singular value, 371
determinant of a square matrix

LA_DETERM, 323
DIAG_MATRIX function, 193
diagonal matrix, 193
DOM (Document Object Model) see XML
droplist widgets returned events, 458

E
eigenvalues

computing, 325
Hessenberg array, returning (LA_HQR), 347
symmetric array (LA_EIGENQL), 331

eigenvectors
non-symmetric array (LA_EIGENVEC), 337

eigenvectors (LA_EIGENQL), 331
events returned by

droplist widgets, 458
tab widgets, 466
tree widgets, 474

Extensible Markup Language see XML

F
file

symbolic links, 203, 209
file pointer

moving, 444
Index What’s New in IDL 5.6

503
FILE_COPY procedure, 196
FILE_LINES function, 200
FILE_LINK procedure, 203
FILE_MOVE procedure, 206
FILE_READLINK function, 209
FILE_SAME function, 211
files

accessing compressed, 31
accessing large files, 30
comparing, 211
copying, 196
formats

ITIFF, 33
moving, 206
new file handling routines, 28

G
Gauss-Markov linear model, 344

H
H5_BROWSER function, 214
H5_CLOSE procedure, 217
H5_GET_LIBVERSION function, 218
H5_OPEN procedure, 219
H5_PARSE function, 220
H5A_CLOSE procedure, 225
H5A_GET_NAME function, 226
H5A_GET_NUM_ATTRS function, 227
H5A_GET_SPACE function, 228
H5A_GET_TYPE function, 229
H5A_OPEN_IDX function, 230
H5A_OPEN_NAME function, 231
H5A_READ function, 232
H5D_CLOSE procedure, 233
H5D_GET_SPACE function, 234
H5D_GET_STORAGE_SIZE function, 235
H5D_GET_TYPE function, 236
H5D_OPEN function, 237

H5D_READ function, 238
H5F_CLOSE procedure, 241
H5F_IS_HDF5 function, 242
H5F_OPEN function, 243
H5G_CLOSE procedure, 244
H5G_GET_COMMENT function, 245
H5G_GET_LINKVAL function, 246
H5G_GET_MEMBER_NAME function, 247
H5G_GET_NMEMBERS function, 249
H5G_GET_OBJINFO function, 250
H5G_OPEN function, 252
H5I_GET_TYPE function, 253
H5R_DEREFERENCE function, 254
H5R_GET_OBJECT_TYPE function, 255
H5S_CLOSE procedure, 257
H5S_COPY function, 258
H5S_CREATE_SIMPLE function, 259
H5S_GET_SELECT_BOUNDS function, 261
H5S_GET_SELECT_ELEM_NPOINTS func-

tion, 262
H5S_GET_SELECT_ELEM_POINTLIST

function, 263
H5S_GET_SELECT_HYPER_BLOCKLIST

function, 265
H5S_GET_SELECT_HYPER_NBLOCKS

function, 267
H5S_GET_SELECT_NPOINTS function, 268
H5S_GET_SIMPLE_EXTENT_DIMS func-

tion, 269
H5S_GET_SIMPLE_EXTENT_NDIMS func-

tion, 270
H5S_GET_SIMPLE_EXTENT_NPOINTS

function, 271
H5S_GET_SIMPLE_EXTENT_TYPE func-

tion, 272
H5S_IS_SIMPLE function, 273
H5S_OFFSET_SIMPLE procedure, 274
H5S_SELECT_ALL procedure, 275
H5S_SELECT_ELEMENTS procedure, 276
H5S_SELECT_HYPERSLAB procedure, 278
H5S_SELECT_NONE procedure, 280
What’s New in IDL 5.6 Index

504
H5S_SELECT_VALID function, 281
H5T_CLOSE procedure, 282
H5T_COMMITTED function, 283
H5T_COPY function, 284
H5T_EQUAL function, 285
H5T_GET_ARRAY_DIMS function, 286
H5T_GET_ARRAY_NDIMS function, 287
H5T_GET_CLASS function, 288
H5T_GET_CSET function, 290
H5T_GET_EBIAS function, 291
H5T_GET_FIELDS function, 292
H5T_GET_INPAD function, 294
H5T_GET_MEMBER_CLASS function, 295
H5T_GET_MEMBER_NAME function, 297
H5T_GET_MEMBER_OFFSET function, 298
H5T_GET_MEMBER_TYPE function, 299
H5T_GET_NMEMBERS function, 300
H5T_GET_NORM function, 301
H5T_GET_OFFSET function, 302
H5T_GET_ORDER function, 303
H5T_GET_PAD function, 304
H5T_GET_PRECISION function, 305
H5T_GET_SIGN function, 306
H5T_GET_SIZE function, 307
H5T_GET_STRPAD function, 308
H5T_GET_SUPER function, 309
H5T_IDLTYPE function, 310
H5T_MEMTYPE function, 312
H5T_OPEN function, 313
HDF5 files

accessing, 34
browsing, 35
viewing, 214

Hessenberg array
eigenvalues (LA_HQR), 347
returning (LA_ELMHES), 341

Hessenberg array or matrix (LA_ELMHES),
341

I
IDL GUIBuilder

enhancements, 41
IDLcomIDispatch

using, 43
IDLffXMLSAX

AttributeDecl method, 149
Characters method, 151
class, 146
Cleanup method, 152
Comment method, 153
ElementDecl method, 154
EndCDATA method, 155
EndDocument method, 156
EndDTD method, 157
EndElement method, 158
EndEntity method, 159
EndPrefixMapping method, 160
Error method, 161
ExternalEntityDecl method, 162
FatalError method, 163
GetProperty method, 164
IgnorableWhitespace method, 166
Init method, 167
InternalEntityDecl method, 169
NotationDecl method, 170
object, 146
ParseFile method, 171
ProcessingInstruction method, 172
SetProperty method, 173
SkippedEntity method, 174
StartCDATA method, 175
StartDocument method, 176
StartDTD method, 177
StartElement method, 178
StartEntity method, 180
StartPrefixmapping method, 181
StopParsing method, 182
UnparsedEntityDecl method, 183
Warning method, 184
Index What’s New in IDL 5.6

505
IDLgrContour
AdjustLabelOffsets method, 186
GetLabelInfo method, 187

ION
availability, 135

ION Java
accessing Object Graphics, 137
array dimension support, 138
enhancements, 137
IDL command execution status, 137
mapping, plotting and contour support, 138

ION Script
data type support, 135
multiple selection in forms, 136
variable evaluation, 136
variable formatting, 135

ITIFF files, 33

K
keywords

determining if set, 1-element array, 32

L
LA_CHOLDC procedure, 314
LA_CHOLMPROVE function, 317
LA_CHOLSOL function, 320
LA_DETERM function, 323
LA_EIGENPROBLEM function, 325
LA_EIGENQL function, 331
LA_EIGENVEC function, 337
LA_ELMHES function, 341
LA_GM_LINEAR_MODEL function, 344
LA_HQR function, 347
LA_INVERT function, 350
LA_LEAST_SQUARE_EQUALITYfunction,

352
LA_LEAST_SQUARES function, 355
LA_LINEAR_EQUATION function, 359

LA_LUDC procedure, 362
LA_LUMPROVE function, 365
LA_LUSOL function, 368
LA_SVD procedure, 371
LA_TRIDC procedure, 375
LA_TRIMPROVE function, 379
LA_TRIQL procedure, 383
LA_TRIRED procedure, 386
LA_TRISOL function, 388
labeling

contour lines, 15
contour objects, 13
polyline objects, 14

LAPACK numerical library, 20
license, personal use, 55
linear algebra

LA_CHOLDC, 314
LA_CHOLMPROVE, 317
LA_CHOLSOL, 320
LA_DETERM, 323
LA_EIGENPROBLEM, 325
LA_EIGENVEC, 337
LA_ELMHES, 341
LA_HQR, 347
LA_INVERT, 350
LA_LUDC, 362
LA_LUMPROVE, 365
LA_LUSOL, 368
LA_SVD, 371
LA_TRIDC, 375
LA_TRIQL, 383
LA_TRIRED, 386
LA_TRISOL, 388
LAPACK library support, 20

linear model
Gauss-Markov, 344

lines
counting, 200

LU decomposition
LA_LUDC procedure, 362
LA_LUSOL function, 368
What’s New in IDL 5.6 Index

506
LA_TRIDC function, 375

M
Macintosh OS X support, 56
map coordinates

transforming, 391, 412
between Cartesian and lat/lon, 37

map projections, 396
USGS General Cartographic Transformation

Package support, 37
MAP_PROJ_FORWARD function, 391
MAP_PROJ_INIT function, 396
MAP_PROJ_INVERSE function, 412
matrices

computing diagonal matrix or vector, 23
computing power of, 23
DIAG_MATRIX, 193

matrix operators
LA_CHOLDC, 314
LA_CHOLMPROVE, 317
LA_CHOLSOL, 320
LA_DETERM, 323
LA_EIGENPROBLEM, 325
LA_EIGENVEC, 337
LA_ELMHES, 341
LA_HQR, 347
LA_INVERT, 350
LA_LUDC, 362
LA_LUMPROVE, 365
LA_LUSOL, 368
LA_SVD, 371
LA_TRIDC, 375
LA_TRIQL, 383
LA_TRIRED, 386
LA_TRISOL, 388

MATRIX_POWER function, 414
median

within array dimensions, 25
memory

mapping shared, 27

Mesa Library, 12
moving files, 206
multi-threading

enhanced support for, 31

O
Object Graphics

software rendering, 12
objects

clipping planes, 15
ONLINE_HELP

modifications, 59
OpenGL rendering

HP, Linux support of, 18
software rendering support of, 12

P
parser, XML, 478
path

expansion, 29
setting path preferences, 39

pixels
returning value of

using objects, 18
PRODUCT function, 416

R
region of interest

masking, 23
REGISTER_CURSOR procedure, 419
rendering

hardware, HP, Linux support, 18
software, supported library, 12

resource names for IDL widgets, 455
reversing

byte order, 447
Index What’s New in IDL 5.6

507
S
SAX (Simple API for XML) see XML
search path

expansion, 29
ShapeFile

dBASE table access, 36
sharable library

building conditionally, 30
shared memory

debugging, 421
mapping, 423
support of, 27
unmapping, 438

SHMDEBUG function, 421
SHMMAP procedure, 423
SHMUNMAP procedure, 438
SHMVAR function, 440
singular value decomposition, 371
SKIP_LUN procedure, 444
software rendering

library support of, 12
SWAP_ENDIAN_INPLACE procedure, 447
symbolic links

creating, 203
following, 209

symbols
use in polyline objects, 14

T
tab widgets

about, 459
events returned by, 466

text files, counting lines, 200
texture mapping

automatic creation of, 16
transforming

map coordinates, 37, 391, 412
tree widgets

about, 467

events returned by, 474
tridiagonal array or matrix, 388
TRUNCATE_LUN procedure, 449
truncating

contents of a file, 449

U
USGS General Cartographic Transformation

Package, 37

V
viewing

HDF5 files, 214

W
WIDGET_COMBOBOX function, 44, 451
WIDGET_INFO function

enhancements, 54
WIDGET_TAB function, 45, 459
WIDGET_TREE function, 45, 467
widgets

button
color options, 49

buttons
appearance of toggle buttons, 49
menu checkmark, 50
tooltip sample, 50

changing appearance of, 455
combobox, 451
iconify events, 48
label

label appearance, 53
move events, 47
resize events, 48
resizing (DYNAMIC_RESIZE keyword),

452
sensitizing and de-sensitizing, 455, 464, 472
What’s New in IDL 5.6 Index

508
tab, 459
table

enhancements, 46
tree, 467

X
X Windows resource names, 455
XML

See also IDLffXMLSAX.
about, 478
DOM, 478
DTD, 483
parsers, 146, 478
SAX, 479
Schema, 483
validation, 483
Index What’s New in IDL 5.6

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL DataMiner Guide
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit User's Guide

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	What's New in IDL: Contents
	Overview of New Features in IDL 5.6
	Visualization Enhancements
	Mesa Library Update
	Labels for Contour Objects
	Labels for Polyline Objects
	Labels for ISOCONTOUR
	New User-Defined Clipping Planes for Objects
	New Keyword to Determine the Maximum Number of Clipping Planes
	Enhancements for Displaying Points and Lines in Object Graphics
	OpenGL Hardware Support for Object Graphics on HP and Linux
	New User-Defined Cursor Registration
	New Keyword to PickData Method

	Analysis Enhancements
	New LAPACK Linear Algebra Routines
	New DIAG_MATRIX Function
	New MATRIX_POWER Function
	New PRODUCT Function
	New Run-length Encoding for ROI Masks
	New Complex Input Support
	Enhancements to ATAN
	Enhancements to the BESEL Functions
	Enhancement to the CURVEFIT Function
	Enhancements to the EXPINT Function
	Enhancements to the GAUSSFIT Function
	Enhancements to the MEDIAN Function

	Language Enhancements
	New Stride Syntax for Array Subscripts
	New Shared Memory Support
	New and Enhanced File Handling Routines
	New SWAP_ENDIAN_INPLACE Procedure
	New Keywords to SWAP_ENDIAN Function
	Enhancements to the EXPAND_PATH Function
	Enhancements to the MAKE_DLL Procedure
	New STRICTARRSUBS Option to COMPILE_OPT
	Large File Support for AIX and Linux Platforms
	Note for AIX Users

	Large File Support For Compressed Files
	64-bit Memory Support On More Platforms
	Thread Pool and Multi-Threading Support On AIX and Mac OS X
	Enhancements to the KEYWORD_SET Function

	File Access Enhancements
	New Support for ITIFF
	New XML Parser Object
	New HDF5 Routines
	New H5_BROWSER Routine
	HDF and HDF-EOS Library Updates
	Enhanced Support for Shapefiles

	Mapping Enhancements
	MAP_PROJ_INIT Function
	MAP_PROJ_FORWARD, and MAP_PROJ_INVERSE Functions

	IDLDE Enhancements
	Copying and Pasting Multiple IDL Code Lines
	Block Comments
	Changes to Path Preferences
	Setting Path Preferences

	IDL GUIBuilder Enhancements
	Support for Tab Widget
	Support for Tree Widget
	Support for Context Events
	Support for Tooltips
	Support for Checked Menu Items
	Support for Sunken Labels
	Support for Move, Iconify, and Size Events for Base Widgets
	Support for Keyboard Events for Draw Widget

	User Interface Toolkit Enhancements
	New COM Functionality
	Support for Optional Arguments
	Support for Default Values
	Support for Argument Skipping
	Support for Function Return Values
	Additional COM Type Mappings

	New Combobox Widget
	New Tab Widget
	New Tree Widget
	Table Widget Enhancements
	Disjoint Cell Selection
	New Deselection Event
	Cell Selection and Edit Mode
	Blanking Table Cells

	Move, Iconify, Size Events for Base Widgets
	Move Events
	Iconify Events
	Resize Events

	Color Bitmap Buttons from Array Data
	Push and Toggle Buttons
	Checkmarks on Menu Buttons
	Tooltips for Button and Draw Widgets
	Keyboard Events for Draw Widgets
	Scrolling Draw Widget Enhancements
	Label Widget Enhancements
	Enhancements to WIDGET_INFO

	New Personal Use Licensing
	New Support for Macintosh OS X
	Documentation Enhancements
	New Image Processing in IDL Manual
	Revised Graphical User Interface Documentation
	Revised and Enhanced External Development Guide
	Version History in Reference Documentation
	New Online Help Systems
	Changes to ONLINE_HELP and the “?” Command

	New and Enhanced IDL Objects
	New IDL Object Classes
	New IDL Object Methods
	IDL Object Method Enhancements
	IDLanROI::ComputeMask
	IDLanROIGroup::ComputeMask
	IDLffShape::GetProperty
	IDLffShape::Init
	IDLffShape::Open
	IDLgrAxis::Init
	IDLgrBuffer::GetDeviceInfo
	IDLgrBuffer::PickData
	IDLgrClipboard::GetDeviceInfo
	IDLgrContour::Init
	IDLgrImage::Init
	IDLgrModel::Init
	IDLgrPlot::Init
	IDLgrPolygon::Init
	IDLgrPolyline::Init
	IDLgrROI::Init
	IDLgrROIGroup::Init
	IDLgrSurface::Init
	IDLgrSymbol::Init
	IDLgrTessellator::AddPolygon
	IDLgrTessellator::Tessellate
	IDLgrText::Init
	IDLgrVolume::Init
	IDLgrVRML::GetDeviceInfo
	IDLgrWindow::GetDeviceInfo
	IDLgrWindow::PickData
	IDLgrWindow::SetCurrentCursor

	New and Enhanced IDL Routines
	New IDL Routines
	IDL Routine Enhancements
	ATAN
	BESELI, BESELJ, BESELK, BESELY
	BETA
	COMPILE_OPT
	CURVEFIT
	DIGITAL_FILTER
	ERF
	ERFC
	ERFCX
	EXPINT
	FILE_DELETE
	GAMMA
	GAUSSFIT
	HELP
	HISTOGRAM
	IBETA
	IGAMMA
	ISOCONTOUR
	KEYWORD_SET
	LNGAMMA
	MAKE_DLL
	MEDIAN
	SVDFIT
	SWAP_ENDIAN
	WIDGET_BASE
	WIDGET_BUTTON
	WIDGET_CONTROL
	WIDGET_DRAW
	WIDGET_INFO
	WIDGET_LABEL
	WIDGET_TABLE
	WRITE_TIFF
	XROI

	ION 1.6 Enhancements
	ION Script Enhancements
	New ION_OBJECT Tag
	New FORMAT Attribute For ION Script Variables
	ION_EVALUATE and ION_VARIABLE Can Now Be Used Inside <IDL> Blocks
	New Support For MULTIPLE Attribute In HTML SELECT Tag
	New Example For Passing Data From IDL to ION Script

	ION Java Enhancements
	IONGr2Canvas Class Now Obsolete
	IDL Command Execution Status Now Properly Reported
	New IONVariable Methods Return Dimensioned Results
	New Supported Keywords for Contours, Maps, Plots, and Surfaces

	Routines Obsoleted in IDL 5.6
	Requirements for this Release
	IDL 5.6 Requirements
	Hardware Requirements for IDL 5.6
	Software Requirements for IDL 5.6

	ION 1.6 Requirements
	Hardware Requirements for ION 1.6
	Web Servers
	Web Browsers
	Java Virtual Machines

	Windows 98 Platform Support Ending

	New IDL Objects and Methods
	IDLffXMLSAX object
	Intrinsic Methods
	eName
	aName
	Type
	Mode
	Value
	Chars
	Comment
	Name
	Model
	URI
	Local
	qName
	Name
	Prefix
	SystemID
	LineNumber
	ColumnNumber
	Message
	Name
	PublicID
	SystemID
	SystemID
	LineNumber
	ColumnNumber
	Message
	FILENAME
	PARSER_LOCATION
	PARSER_PUBLICID
	PARSER_URI
	Chars
	NAMESPACE_PREFIXES (Get, Set)
	SCHEMA_CHECKING (Get, Set)
	VALIDATION_MODE (Get, Set)
	Name
	Value
	Name
	PublicID
	SystemID
	Filename
	Target
	Data
	Name
	Name
	PublicID
	SystemID
	URI
	Local
	qName
	attrName
	attrValue
	Name
	Prefix
	URI
	Name
	PublicID
	SystemID
	Notation
	SystemID
	LineNumber
	ColumnNumber
	Message

	IDLgrContour object
	LevelIndex
	LabelOffsets
	Destination
	LevelIndex
	LABEL_OFFSETS
	LABEL_POLYLINES
	LABEL_OBJECTS

	New IDL Routines
	COPY_LUN
	FromUnit
	ToUnit
	Num
	EOF
	LINES
	TRANSFER_COUNT

	DIAG_MATRIX
	A
	Diag

	FILE_COPY
	SourcePath
	DestPath
	ALLOW_SAME
	COPY_NAMED_PIPE (UNIX Only)
	COPY_SYMLINK (UNIX Only)
	FORCE (UNIX Only)
	NOEXPAND_PATH
	OVERWRITE
	RECURSIVE
	REQUIRE_DIRECTORY
	VERBOSE

	FILE_LINES
	Path
	NOEXPAND_PATH

	FILE_LINK
	SourcePath
	DestPath
	ALLOW_SAME
	HARDLINK
	NOEXPAND_PATH
	VERBOSE

	FILE_MOVE
	SourcePath
	DestPath
	ALLOW_SAME
	NOEXPAND_PATH
	OVERWRITE
	REQUIRE_DIRECTORY
	VERBOSE

	FILE_READLINK
	Path
	ALLOW_NONEXISTENT
	ALLOW_NONSYMLINK
	NOEXPAND_PATH

	FILE_SAME
	Path1, Path2
	NOEXPAND_PATH

	H5_BROWSER
	Files
	DIALOG_READ
	Open HDF5 file
	Show preview
	Fit in window
	Flip vertical
	Flip horizontal
	Open
	Cancel
	Variable name for import
	Include data
	Import to IDL
	Done

	H5_CLOSE
	H5_GET_LIBVERSION
	H5_OPEN
	H5_PARSE
	Structure Fields Common to All Object Types
	Additional Fields for Groups, Datasets, and Named Datatypes
	Additional Fields for Groups
	Additional Fields for Datasets, Attributes, and Named Datatypes
	Additional Fields for Datasets and Attributes
	File
	Loc_id
	Name
	FILE
	PATH
	READ_DATA

	H5A_CLOSE
	Attribute_id

	H5A_GET_NAME
	Attribute_id

	H5A_GET_NUM_ATTRS
	Loc_id

	H5A_GET_SPACE
	Attribute_id

	H5A_GET_TYPE
	Attribute_id

	H5A_OPEN_IDX
	Loc_id
	Index

	H5A_OPEN_NAME
	Loc_id
	Name

	H5A_READ
	Attribute_id

	H5D_CLOSE
	Dataset_id

	H5D_GET_SPACE
	Dataset_id

	H5D_GET_STORAGE_SIZE
	Dataset_id

	H5D_GET_TYPE
	Dataset_id

	H5D_OPEN
	Loc_id
	Name

	H5D_READ
	Dataset_id
	FILE_SPACE
	MEMORY_SPACE

	H5F_CLOSE
	File_id

	H5F_IS_HDF5
	Filename

	H5F_OPEN
	Filename

	H5G_CLOSE
	Group_id

	H5G_GET_COMMENT
	Loc_id
	Name

	H5G_GET_LINKVAL
	Loc_id
	Name

	H5G_GET_MEMBER_NAME
	Loc_id
	Name
	Index

	H5G_GET_NMEMBERS
	Loc_id
	Name

	H5G_GET_OBJINFO
	FILENO
	OBJNO
	NLINK
	TYPE
	MTIME
	LINKLEN
	Loc_id
	Name
	FOLLOW_LINK

	H5G_OPEN
	Loc_id
	Name

	H5I_GET_TYPE
	Obj_id

	H5R_DEREFERENCE
	Loc_id
	Reference

	H5R_GET_OBJECT_TYPE
	Loc_id
	Reference

	H5S_CLOSE
	Dataspace_id

	H5S_COPY
	Dataspace_id

	H5S_CREATE_SIMPLE
	Dimensions
	MAX_DIMENSIONS

	H5S_GET_SELECT_BOUNDS
	Dataspace_id

	H5S_GET_SELECT_ELEM_NPOINTS
	Dataspace_id

	H5S_GET_SELECT_ELEM_POINTLIST
	Dataspace_id
	START
	NUMBER

	H5S_GET_SELECT_HYPER_BLOCKLIST
	Dataspace_id
	START
	NUMBER

	H5S_GET_SELECT_HYPER_NBLOCKS
	Dataspace_id

	H5S_GET_SELECT_NPOINTS
	Dataspace_id

	H5S_GET_SIMPLE_EXTENT_DIMS
	Dataspace_id
	MAX_DIMENSIONS

	H5S_GET_SIMPLE_EXTENT_NDIMS
	Dataspace_id

	H5S_GET_SIMPLE_EXTENT_NPOINTS
	Dataspace_id

	H5S_GET_SIMPLE_EXTENT_TYPE
	Dataspace_id

	H5S_IS_SIMPLE
	Dataspace_id

	H5S_OFFSET_SIMPLE
	Dataspace_id
	Offset

	H5S_SELECT_ALL
	Dataspace_id

	H5S_SELECT_ELEMENTS
	Dataspace_id
	Coordinates
	RESET

	H5S_SELECT_HYPERSLAB
	Dataspace_id
	Start
	Count
	BLOCK
	RESET
	STRIDE

	H5S_SELECT_NONE
	Dataspace_id

	H5S_SELECT_VALID
	Dataspace_id

	H5T_CLOSE
	Datatype_id

	H5T_COMMITTED
	Datatype_id

	H5T_COPY
	Datatype_id

	H5T_EQUAL
	Datatype_id1
	Datatype_id2

	H5T_GET_ARRAY_DIMS
	Datatype_id
	PERMUTATIONS

	H5T_GET_ARRAY_NDIMS
	Datatype_id

	H5T_GET_CLASS
	Datatype_id

	H5T_GET_CSET
	Datatype_id

	H5T_GET_EBIAS
	Datatype_id

	H5T_GET_FIELDS
	TYPE_ID
	SIGN_POS
	EXP_POS
	EXP_SIZE
	MAN_POS
	MAN_SIZE
	Datatype_id

	H5T_GET_INPAD
	Datatype_id

	H5T_GET_MEMBER_CLASS
	Datatype_id
	Member

	H5T_GET_MEMBER_NAME
	Datatype_id
	Member

	H5T_GET_MEMBER_OFFSET
	Datatype_id
	Member

	H5T_GET_MEMBER_TYPE
	Datatype_id
	Member

	H5T_GET_NMEMBERS
	Datatype_id

	H5T_GET_NORM
	Datatype_id

	H5T_GET_OFFSET
	Datatype_id

	H5T_GET_ORDER
	Datatype_id

	H5T_GET_PAD
	Datatype_id

	H5T_GET_PRECISION
	Datatype_id

	H5T_GET_SIGN
	Datatype_id

	H5T_GET_SIZE
	Datatype_id

	H5T_GET_STRPAD
	Datatype_id

	H5T_GET_SUPER
	Datatype_id

	H5T_IDLTYPE
	Datatype_id
	ARRAY_DIMENSIONS
	STRUCTURE

	H5T_MEMTYPE
	Datatype_id

	H5T_OPEN
	Loc_id
	Name

	LA_CHOLDC
	Array
	DOUBLE
	STATUS
	UPPER

	LA_CHOLMPROVE
	Array
	Achol
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR
	UPPER

	LA_CHOLSOL
	A
	B
	DOUBLE
	UPPER

	LA_DETERM
	A
	CHECK
	DOUBLE
	ZERO

	LA_EIGENPROBLEM
	A
	B
	ALPHA
	BALANCE
	BETA
	DOUBLE
	EIGENVECTORS
	LEFT_EIGENVECTORS
	NORM_BALANCE
	PERMUTE_RESULT
	RCOND_VALUE
	RCOND_VECTOR
	SCALE_RESULT
	STATUS

	LA_EIGENQL
	A
	B
	DOUBLE
	EIGENVECTORS
	FAILED
	GENERALIZED
	METHOD
	RANGE
	SEARCH_RANGE
	STATUS
	TOLERANCE

	LA_EIGENVEC
	T
	QZ
	BALANCE
	DOUBLE
	EIGENINDEX
	LEFT_EIGENVECTORS
	PERMUTE_RESULT
	RCOND_VALUE
	RCOND_VECTOR
	SCALE_RESULT
	SELECT

	LA_ELMHES
	Array
	Q
	BALANCE
	DOUBLE
	NORM_BALANCE
	PERMUTE_RESULT
	SCALE_RESULT

	LA_GM_LINEAR_MODEL
	A
	B
	D
	Y
	DOUBLE

	LA_HQR
	H
	Q
	DOUBLE
	PERMUTE_RESULT
	STATUS

	LA_INVERT
	A
	DOUBLE
	STATUS

	LA_LEAST_SQUARE_EQUALITY
	A
	B
	C
	D
	DOUBLE
	RESIDUAL

	LA_LEAST_SQUARES
	A
	B
	DOUBLE
	METHOD
	RANK
	RCONDITION
	RESIDUAL
	STATUS

	LA_LINEAR_EQUATION
	Array
	B
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR
	STATUS

	LA_LUDC
	Array
	Index
	DOUBLE
	STATUS

	LA_LUMPROVE
	Array
	Aludc
	Index
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR

	LA_LUSOL
	A
	Index
	B
	DOUBLE

	LA_SVD
	Array
	W
	U
	V
	DIVIDE_CONQUER
	DOUBLE
	STATUS

	LA_TRIDC
	AL
	A
	AU
	U2
	Index
	DOUBLE
	STATUS

	LA_TRIMPROVE
	AL
	A
	AU
	DAL
	DA
	DAU
	DU2
	Index
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR

	LA_TRIQL
	D
	E
	A
	DOUBLE
	STATUS

	LA_TRIRED
	Array
	D
	E
	DOUBLE
	UPPER

	LA_TRISOL
	AL
	A
	AU
	U2
	Index
	B
	DOUBLE

	MAP_PROJ_FORWARD
	Longitude
	Latitude
	CONNECTIVITY
	MAP_STRUCTURE
	POLYGONS
	POLYLINES
	RADIANS

	MAP_PROJ_INIT
	Projection
	DATUM
	GCTP
	LIMIT
	RADIANS
	RELAXED
	CENTER_AZIMUTH
	CENTER_LATITUDE
	CENTER_LONGITUDE
	FALSE_EASTING
	FALSE_NORTHING
	HEIGHT
	HOM_AZIM_LONGITUDE
	HOM_AZIM_ANGLE
	HOM_LATITUDE1
	HOM_LATITUDE2
	HOM_LONGITUDE1
	HOM_LONGITUDE2
	IS_ZONES
	IS_JUSTIFY
	MERCATOR_SCALE
	OEA_ANGLE
	OEA_SHAPEM
	OEA_SHAPEN
	ROTATION
	SEMIMAJOR_AXIS
	SEMIMINOR_AXIS
	SOM_INCLINATION
	SOM_LONGITUDE
	SOM_PERIOD
	SOM_RATIO
	SOM_FLAG
	SOM_LANDSAT_NUMBER
	SOM_LANDSAT_PATH
	SPHERE_RADIUS
	STANDARD_PARALLEL
	STANDARD_PAR1
	STANDARD_PAR2
	SAT_TILT
	TRUE_SCALE_LATITUDE
	ZONE

	MAP_PROJ_INVERSE
	X
	Y
	MAP_STRUCTURE
	RADIANS

	MATRIX_POWER
	Array
	N
	DOUBLE
	STATUS

	PRODUCT
	Array
	Dimension
	CUMULATIVE
	NAN
	Thread Pool Keywords

	REGISTER_CURSOR
	Name
	Image
	MASK
	HOTSPOT
	OVERWRITE

	SHMDEBUG
	Enable

	SHMMAP
	Why Use Mapped Memory?
	SegmentName
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DESTROY_SEGMENT
	DIMENSION
	DOUBLE
	FILENAME
	FLOAT
	GET_NAME
	GET_OS_HANDLE
	INTEGER
	L64
	LONG
	OFFSET
	OS_HANDLE
	Posix (UNIX) Shared Memory
	UNIX System V Shared Memory
	Windows Anonymous Shared Memory
	UNIX Memory Mapped Files
	Windows Memory Mapped Files

	PRIVATE
	SIZE
	SYSV
	TEMPLATE
	TYPE
	UINT
	ULONG
	UL64
	Types Of Memory Segments
	UNIX
	UNIX Memory Mapped Files
	UNIX System V Shared Memory
	Posix Shared Memory
	Microsoft Windows

	Reference Counts And Memory Segment Lifecycle
	Example 1
	Example 2
	Example 3
	Example 4

	SHMUNMAP
	SegmentName

	SHMVAR
	SegmentName
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DIMENSION
	DOUBLE
	FLOAT
	INTEGER
	L64
	LONG
	SIZE
	TEMPLATE
	TYPE
	UINT
	ULONG
	UL64

	SKIP_LUN
	FromUnit
	Num
	EOF
	LINES
	TRANSFER_COUNT

	SWAP_ENDIAN_INPLACE
	Variable
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN

	TRUNCATE_LUN
	Unitn
	Example 1
	Example 2

	WIDGET_COMBOBOX
	Parent
	DYNAMIC_RESIZE
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_TAB
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	EVENT_FUNC
	EVENT_PRO
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	LOCATION
	MULTILINE
	Windows
	Motif

	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	UNAME
	UNITS
	UVALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_TREE
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	BITMAP
	CONTEXT_EVENTS
	EVENT_FUNC
	EVENT_PRO
	EXPANDED
	FOLDER
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MULTIPLE
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TOP
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Select (TYPE = 0)
	Expand (TYPE = 1)
	Context Menu Events

	Using the XML Parser Object Class
	About XML
	About XML Parsers
	Tree-based Parsers
	Event-based Parsers

	Using the XML Parser
	Subclassing the IDLffXMLSAX Object Class
	Define a Class Structure
	Override Superclass Methods
	Write Additional Methods
	Create a Class Definition Routine

	Using Your Parser
	Validation

	Example: Reading Data Into an Array
	Creating the xml_to_array Object Class
	Object Class Definition
	Init Method
	Cleanup Method
	Characters Method
	StartDocument Method
	StartElement Method
	EndElement Method
	GetArray Method

	Using the xml_to_array Parser

	Example: Reading Data Into Structures
	Creating the xml_to_struct Object Class
	Object Class Definition
	Init Method
	Characters Method
	StartElement Method
	EndElement Method
	GetArray Method

	Using the xml_to_struct Parser

	Building Complex Data Structures
	Use Dynamically Sized Arrays if Necessary
	Use Fixed-Size Arrays When Possible
	Using Nested Structures

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

